精英家教网 > 高中数学 > 题目详情

已知数列满足若a1=,则a2009的值为(   )

A.           B.           C.           D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中a1=
3
5
,an=2-
1
an-1
(n≥2,n∈N*),数列 {bn},满足bn=
1
an-1
(n∈N*),
(1)求证数列 {bn}是等差数列;
(2)若sn=(a1-1)•(a2-1)+(a2-1)•(a3-1)+…+(an-1)•(an+1-1)是否存在a与b∈Z,使得:a≤sn≤b恒成立.若有,求出a的最大值与b的最小值,如果没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山二模)已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=
n(an-a1)
2

(I)试判断数列{an}是否是等差数列,若是,求其通项公式,若不是,说明理由;
(II)令Pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
Tn是数列{Pn}
的前n项和,求证:Tn-2n<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖三模)已知数列满足a1+2a2+…+2n-1an=
n
2
(n∈N+).
(Ⅰ)求数列{an}的通项;
(Ⅱ)若bn=
n
an
,求数列{bn}的前n和Sn
(Ⅲ)求证Sn≥n2+2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•上海模拟)已知数列{an}有a1?a,a2?p (常数p>0),对任意的正整数n,Sn?a1a2…an,并有Sn满足Sn=
n(an-a1)
2

(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b,且
lim
n→∞
bn=b
,则称b为数列{bn}的“上渐进值”,求数列
an-1
an+1
的“上渐进值”.

查看答案和解析>>

同步练习册答案