精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x﹣a|,g(x)=ax,(a∈R).
(1)若函数y=f(x)是偶函数,求出符合条件的实数a的值;
(2)若方程f(x)=g(x)有两解,求出实数a的取值范围;
(3)若a>0,记F(x)=g(x)f(x),试求函数y=F(x)在区间[1,2]上的最大值.
解:(1)∵函数f(x)=|x﹣a|为偶函数,
∴对任意的实数x,f(﹣x)=f(x)成立即|﹣x﹣a|=|x﹣a|,
∴x+a=x﹣a恒成立,或x+a=a﹣x恒成立
∵x+a=a﹣x不能恒成立
∴x+a=x﹣a恒成立,得a=0.
(2)当a>0时,|x﹣a|﹣ax=0有两解,
等价于方程(x﹣a)2﹣a2x2=0在(0,+∞)上有两解,
即(a2﹣1)x2+2ax﹣a2=0在(0,+∞)上有两解,
令h(x)=(a2﹣1)x2+2ax﹣a2
因为h(0)=﹣a2<0,
所以 ,故0<a<1;
同理,当a<0时,得到﹣1<a<0;
当a=0时,f(x)=|x|=0=g(x),显然不合题意,舍去.
综上可知实数a的取值范围是(﹣1,0)∪(0,1).
(3)令F(x)=f(x)·g(x)
①当0<a≤1时,则F(x)=a(x2﹣ax),
对称轴 ,函数在[1,2]上是增函数,
所以此时函数y=F(x)的最大值为4a﹣2a2
②当1<a≤2时, ,
对称轴 ,所以函数y=F(x)在(1,a]上是减函数,
在[a,2]上是增函数,F(1)=a2﹣a,F(2)=4a﹣2a2
1)若F(1)<F(2),即 ,此时函数y=F(x)的最大值为4a﹣2a2
2)若F(1)≥F(2),即 ,此时函数y=F(x)的最大值为a2﹣a.
③当2<a≤4时,F(x)=﹣a(x2﹣ax)
对称轴 ,此时 
④当a>4时,对称轴 ,此时 .
综上可知,函数y=F(x)在区间[1,2]上的最大值 
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案