精英家教网 > 高中数学 > 题目详情
(1)已知f(x)的定义域为(-
1
2
3
2
),则f(cosx)
的定义域为
 

(2)设f(2sinx-1)=cos2x,则f(x)的定义域为
 
分析:(1)由f(x)的定义域为(-
1
2
3
2
),则f(cosx)
的表达式要想有意义必须满足cosx∈(-
1
2
3
2
)
,解三角不等式即可得到复合函数的定义域.
(2)由f(2sinx-1)=cos2x我们不难求出自变量位置上2sinx-1的取值范围,不难给出f(x)的定义域.
解答:解:(1)∵f(x)的定义域为(-
1
2
3
2
)

∴要使f(cosx)的解析式有意义,须满足
-
1
2
<cosx<
3
2

即2kπ-
3
<x<2kπ-
π
6
,或2kπ+
π
6
<x<2kπ+
3
,(k∈Z)
故f(cosx)的定义域为:(2kπ-
3
,2kπ-
π
6
)∪(2kπ+
π
6
<x<2kπ+
3
),(k∈Z)
(2)∵-3≤2sinx-1≤1
故f(x)的定义域为[-3,1]
故答案为:(2kπ-
3
,2kπ-
π
6
)∪(2kπ+
π
6
<x<2kπ+
3
),(k∈Z),[-3,1]
点评:求复合函数的定义域的关键是“以不变应万变”,即不管函数括号里的式子形式怎么变化,括号里式子的取值范围始终不发生变化.即:若f[g(x)]中若内函数的值域为A,则求f[u(x)]的定义域等价于解不等式u(x)∈A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)为定义域D上单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数,区间[a,b]叫做等域区间.
(1)已知f(x)=x
12
是[0,+∞)上的正函数,求f(x)的等域区间;
(2)试探究是否存在实数m,使得函数g(x)=x2+m是(-∞,0)上的正函数?若存在,请求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对定义域中任意x,均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称;
(1)已知f(x)=
x2-mx+1x
的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=-2x-n(x-1),求函数g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的条件下,若对实数x<0及t>0,恒有g(x)+tf(t)>0,求正实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下五个命题:
①任意n∈N*,(n2-5n+5)2=1.
②已知f(x)=
x
1+x2
,则
f(f(f(…)))
 n个
=
x
1+nx2

③设全集U={1,2,3,4,5,6},集合A={3,4},B={3,6},则CU(A∪B)={1,2,3,5,6}.
④定义在R上的函数y=f(x)在区间(1,2)上存在唯一零点的充要条件是f(1)•f(2)<0.
⑤已知a>0,b>0,则
1
a
+
1
b
+2
ab
的最小值是4.
其中正确命题的序号是
②⑤
②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x+
1
x
)
=x3+
1
x3
,则函数f(x)的解析式为
 

(2)已知3f(x)+5f(
1
x
)=
2
x
+1,则函数f(x)的解析式为
 

查看答案和解析>>

同步练习册答案