精英家教网 > 高中数学 > 题目详情

已知函数f(x)=|x+1|+ax(a∈R).若函数f(x)在 R 上具有单调性,则a的取值范围为________.

(-∞,-1)∪(1,+∞)
分析:先化简f(x)=,再分类讨论:①a>1时或a<-1时,②a=1或-1时,③-1<a<1时,最后研究函数f(x)在R上的单调性即可.
解答:原函数式化简得:f(x)=
①a>1时,
当x≥-1时,f(x)=(a+1)x+1是增函数,且f(x)≥f(-1)=-a;
当x<-1时,f(x)=(a-1)x-1是增函数,且f(x)<f(-1)=-a.
所以,当a>1时,函数f(x)在R上是增函数.
同理可知,当a<-1时,函数f(x)在R上是减函数.(6分)
②a=1或-1时,易知,不合题意.
③-1<a<1时,取x=0,得f(0)=1,取x=,由<-1,知f()=1,
所以f(0)=f().
所以函数f(x)在R上不具有单调性.(10分)
综上可知,若函数f(x)在 R 上具有单调性,则a的取值范围是(-∞,-1)∪(1,+∞).(12分)
故答案为:(-∞,-1)∪(1,+∞).
点评:本题考查函数的单调性及单调区间,以及利用函数的单调性求参数的取值范围.属于中档题.考查了分类讨论的思想及判断推理的能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案