精英家教网 > 高中数学 > 题目详情
15.下列说法中正确的有(  )
①幂函数图象均为过点(1,1);
②幂函数y=x-1在(-∞,0)上单调递减,在(0,+∞)上也单调递减,因此幂函数y=x-1是定义域内的单调函数;
③幂函数的图象均在两个象限内出现;
④幂函数在第四象限内可以有图象;
⑤当a>0时,幂函数在第一象限内均为增函数;
⑥任意两个幂函数的图象最多有两个交点.
A.1个B.2个C.3个D.4个

分析 根据幂函数的定义和性质分别进行判断即可.

解答 解:①设幂函数为f(x)=xα,则f(1)=1,则幂函数图象均为过点(1,1),故①正确;
②幂函数y=x-1在(-∞,0)上单调递减,在(0,+∞)上也单调递减,因此幂函数y=x-1是定义域内的单调函数,错误,此时函数在定义域(-∞,0)∪(0,+∞)不是单调函数,故②错误;
③当f(x)=${x}^{\frac{1}{2}}$=$\sqrt{x}$时,函数的图象只在第一象限出现,则幂函数的图象均在两个象限内出现错误,故③错误;
④当x>0时,f(x)=xα>0,即幂函数不经过第四象限,故④错误;
⑤当a>0时,幂函数在第一象限内均为增函数,正确;
⑥任意两个幂函数的图象最多有两个交点,错误.
比如f(x)=x2,g(x)=x4
由x2=x4,得x2(x2-1)=0,得x=0,或x=1或x=-1,即函数有三个交点(0,0),(1,1),(-1,1),故⑥错误,
故正确的是①⑤,共有2个,
故选:B

点评 本题主要考查命题的真假判断,根据幂函数的图象和性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某企业生产A、B两种产品,现有资源如下:煤360吨,水300吨,电200千瓦.每生产1吨A产品需消耗煤9吨,水3吨,电4千瓦,利润7万元;每生产1吨B产品需消耗煤4吨,水10吨,电5千瓦,利润12万元.
(Ⅰ)根据题目信息填写下表:
每吨产品煤(吨)水(吨)电(千瓦)
A
B
(Ⅱ)设分别生产A、B两种产品x吨、y吨,总产值为z万元,请列出x、y满足的不等式组及目标函数.
(Ⅲ)试问该企业利用现有资源,生产A、B两种产品各多少吨,才能获得最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sin(3x+$\frac{π}{4}$).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调增区间;
(Ⅲ)当x∈[-$\frac{π}{6}$,$\frac{π}{6}$]时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知F是抛物线C:y2=2px(p>0)的焦点,O为坐标原点.
(1)若M,N是抛物线C上的两个动点,OM,ON的倾斜角分别为θ1,θ2,且θ12=$\frac{π}{3}$,求证:直线MN恒过定点;
(2)抛物线C上是否存在点P,使得$\frac{OP}{FP}$达到最大值,如果存在,求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=tan2x-2tanx+3的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过抛物线y2=4ax(a>0)的焦点F作斜率为-1的直线,该直线与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线的交点分别为B,C,其中点B落在第一象限内,若xC是xB与xF的等比中项,则双曲线的离心率为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.网上有一项虚似的游戏,在如图所示的等腰直角三角形上有15个格点(横、纵相邻格点间的距离为1个单位),三角形边界上的每个格点记1分,三角形内部的每个格点记2分,若点击鼠标左键,屏幕上会随机等可能地显示点中的某一格点,点中某格点后,将与其距离为1个单位的格点的分数和作为其得分.
(1)某人点击鼠标左键,若第一次显示点中三角形内部的格点,第二次显示点中三角形边界上的格点,求恰好两次点中的格点间的距离为1个单位的概率;
(2)随即点击鼠标左键一次,其得分记为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\sqrt{lo{g}_{\frac{1}{2}}({2}^{x}-1)}$的定义域是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数f(x)=sin(2x+θ)(-$\frac{π}{2}$<θ<$\frac{π}{2}$)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,$\frac{\sqrt{3}}{2}$),则φ的值可以是(  )
A.$\frac{5π}{3}$B.$\frac{5π}{6}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案