精英家教网 > 高中数学 > 题目详情
已知数列{dn}满足dn=n,等比数列{an}为递增数列,且a52=a10,2(an+an+2)=5an+1,n∈N*
(Ⅰ)求an
(Ⅱ)令cn=1-(-1)nan,不等式ck≥2014(1≤k≤100,k∈N*)的解集为M,求所有dk+ak(k∈M)的和.
分析:(I)设{an}的首项为a1,公比为q,利用等比数列的通项公式及a52=a10,即可解得q与a1的关系,再利用2(an+an+2)=5an+1,n∈N*.即可解得q.
(II)由(I)可得:cn=1-(-1)nan=1-(-2)n,dn=n.当n为偶数,不成立.当n为奇数,cn=1+2n≥2014,即2n≥2013,可得:n=2m+1,5≤m≤49.可知:{dk}组成首项为11,公差为2的等差数列;数列{ak}(k∈M)组成首项为211,公比为4的等比数列.利用其前n项和公式即可得出.
解答:解:(Ⅰ)设{an}的首项为a1,公比为q≠0,
∵a52=a10
(a1q4)2=a1q9,解得a1=q.
又∵2(an+an+2)=5an+1
2(an+anq2)=5anq
∵an≠0,
∴2(1+q2)=5q,2q2-5q+2=0,解得q=
1
2
(舍)或q=2.
an=2×2n-1=2n
(Ⅱ)由(I)可得:cn=1-(-1)nan=1-(-2)n,dn=n.
当n为偶数,cn=1-2n≥2014,即2n≤-2013,不成立
当n为奇数,cn=1+2n≥2014,即2n≥2013,
∵210=1024,211=2048,
∴n=2m+1,5≤m≤49.
则{dk}组成首项为11,公差为2的等差数列;
数列{ak}(k∈M)组成首项为211,公比为4的等比数列.
则所有dk+ak(k∈M)的和为
45(11+99)
2
+
211(1-445)
1-4
=2475+
2101-2048
3
=
2101+5377
3
点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式、分类讨论等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=6,an+1=
n+2
n
an+(n+1)(n+2)

(1)求a2,a3
(2)若dn=
an
n(n+1)
,求数列{dn}的通项公式;
(3)若an=kC3n+2,(其中Cnm表示组合数),求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},如果数列{bn}满足b1=a1 ,bn=an+an-1 (n≥2,n∈N*),则称数列{bn}是数列{an}的“生成数列”
(1)若数列{an}的通项为an=n,写出数列{an}的“生成数列”{bn}的通项公式;
(2)若数列{cn}的通项为cn=2n+b,(其中b是常数),试问数列{cn}的“生成数列”{ln}是否是等差数列,请说明理由.
(3)已知数列{dn}的通项为dn=2n+n,设数列{dn}的“生成数列”{pn}的前n项和为Tn,问是否存在自然数m满足满足(Tm-2012)(Tm-6260)≤0,若存在请求出m的值,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)已知数列{an}满足a1=2,an+1=2(1+
1
n
)2an

(1)令bn=
an
n2
,求数列{bn}和{an}的通项公式;
(2)设cn=(An2+Bn+C)•2n,试推断是否存在常数A,B,C,使对一切n∈N*都有an=cn+1-cn成立?若存在,求出A,B,C的值;若不存在,说明理由;
(3)对(2)中数列{cn},设dn=
an
cn
,求{dn}的最小项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)已知数列{an}满足a1=1,a1+a2+…+an-1-an=-1(n≥2且n∈N*).
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)令dn=1+loga
a
2
n+1
+
a
2
n+2
5
(a>0,a≠1)
,记数列{dn}的前n项和为Sn,若
S2n
Sn
恒为一个与n无关的常数λ,试求常数a和λ.

查看答案和解析>>

同步练习册答案