精英家教网 > 高中数学 > 题目详情

甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量为这五名志愿者中参加岗位服务的人数, 可取何值?请求出相应的值的分布列.

 

【答案】

(Ⅰ)甲、乙两人同时参加岗位服务的概率是. (Ⅱ)甲、乙两人不在同一岗位服务的概率是.(Ⅲ)随机变量可能取的值为1,2.   

【解析】

试题分析:(Ⅰ)记甲、乙两人同时参加岗位服务为事件,那么,即甲、乙两人同时参加岗位服务的概率是.        4分 

(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件,那么,所以,甲、乙两人不在同一岗位服务的概率是.        8分 

(Ⅲ)随机变量可能取的值为1,2.事件“”是指有两人同时参加岗位服务,则.所以         12分 

考点:本题考查了随机事件的概率及分布列的定义

点评:熟练掌握随机变量的取值及分布列的概念是解决此类问题的关键,属常考题型

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,ξ可取何值?请求出相应的ξ值的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(北京卷文18)甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.

(Ⅰ)求甲、乙两人同时参加岗位服务的概率;

(Ⅱ)求甲、乙两人不在同一个岗位服务的概率.

查看答案和解析>>

科目:高中数学 来源:2010年河北省高二第二学期期末考试数学(文)试卷 题型:解答题

(本小题满分12分)

甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.

(Ⅰ)求甲、乙两人同时参加岗位服务的概率;

(Ⅱ)求甲、乙两人不在同一个岗位服务的概率。

 

查看答案和解析>>

同步练习册答案