精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,x∈[3,5].
(1)利用定义证明函数f(x)单调递增;
(2)求函数f(x)的最大值和最小值.

【答案】
(1)证明:令3≤x1<x2≤5,

则f(x1)﹣f(x2)=1﹣ ﹣(1﹣

=﹣3( )=﹣3

∵3≤x1<x2≤5,∴x2﹣x1>0,(x1+2)(x2+2)>0,

∴f(x1)<f(x2),

故f(x)在[3,5]递增


(2)解:由f(x)在[3,5]递增,

可得f(3)取得最小值1﹣ =

f(5)取得最大值1﹣ =


【解析】(1)根据函数单调性的定义证明函数的单调性,注意取值、作差、变形和定符号和下结论;(2)运用函数的单调性,从而求出函数的最值.
【考点精析】利用函数单调性的判断方法和函数的最值及其几何意义对题目进行判断即可得到答案,需要熟知单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A、B、C所对边分别是a、b、c,已知B=60°,
(1)若b= ,A=45°,求a;
(2)若a、b、c成等比数列,请判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中所有正确的序号是
①函数f(x)=ax1+3(a>0且a≠1)的图象一定过定点P(1,4);
②函数f(x﹣1)的定义域是(1,3),则函数f(x)的定义域为(2,4);
③已知f(x)=x5+ax3+bx﹣8,且f(﹣2)=8,则f(2)=﹣8;
④f(x)= 为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在(﹣1,1)上的偶函数,当x∈[0,1)时f(x)=lg
(1)求f(x)的解析式;
(2)探求f(x)的单调区间,并证明f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2﹣2ax+b+1(a>0)在区间[2,3]上有最大值4,最小值1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设g(x)= .若不等式g(2x)﹣k2x≥0对任意x∈[1,2]恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:

累积净化量(克)

12以上

等级

为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:

(1)求的值及频率分布直方图中的值;

(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?

(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A、B、C的对边,且2asinA=(2b﹣c)sinB+(2c﹣b)sinC.
(Ⅰ)求角A的大小;
(Ⅱ)若sinB+sinC= ,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C和y轴相切,圆心在直线x﹣3y=0上,且被直线y=x截得的弦长为 ,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数曲线在点处的切线方程为.

(1)求

(2)若存在实数,对任意的,都有,求整数的最小值.

查看答案和解析>>

同步练习册答案