精英家教网 > 高中数学 > 题目详情

【题目】已知函数曲线在点处的切线方程为.

(1)求

(2)若存在实数,对任意的,都有,求整数的最小值.

【答案】(1);(2)2.

【解析】试题分析:(1)利用切点和斜率,求得曲线在处的切线方程,通过对比系数可求得.(2)由(1)可判断函数为偶函数,将原不等式两边取对数,可得,去绝对值后利用分离常数法,并利用导数可求得的取值范围,进而求得的取值和取值的最小值.

试题解析:

(1)时, .

所以曲线在点处的切线方程为,即.

又曲线在点处的切线方程为

所以.

(2)由(1)知,显然对于任意恒成立,

所以为偶函数, .

两边取以为底的对数得

所以上恒成立.

(因为),

所以 .

,易知上单调递减,

所以,故

要此不等式有解必有,又

所以满足要求,故所求的最小正整数为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,x∈[3,5].
(1)利用定义证明函数f(x)单调递增;
(2)求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中, ,四边形为矩形, ,平面平面

(Ⅰ)求证: 平面

(Ⅱ)求平面与平面所成锐二面角的余弦值;

(Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=
(Ⅰ)求证:PD⊥平面PAB;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求 的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,g(x)=x2+2ax+1(a为正常数),且函数f(x)和g(x)的图象与y轴的交点重合.
(1)求a实数的值
(2)若h(x)=f(x)+b (b为常数)试讨论函数h(x)的奇偶性;
(3)若关于x的不等式f(x)﹣2 >a有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点O,焦点在轴上,离心率为的椭圆C过点

(Ⅰ)求椭圆C的方程;

(Ⅱ)设不过坐标原点O的直线与椭圆C交于P,Q两点,若,证明:点O到直线的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆曲线方程为 ,两焦点分别为F1 , F2
(1)若n=﹣1,过左焦点为F1且斜率为 的直线交圆锥曲线于点A,B,求△ABF2的周长.
(2)若n=4,P圆锥曲线上一点,求PF1PF2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+ax+b,且f(4)=﹣3.
(1)若函数f(x)在区间[2,+∞)上递减,求实数b的取值范围;
(2)若函数f(x)的图象关于直线x=1对称,且关于x的方程f(x)=log2m在区间[﹣3,3]上有解,求m的最大值.

查看答案和解析>>

同步练习册答案