精英家教网 > 高中数学 > 题目详情
已知a∈R,函数=sinx-|a|,x∈R为奇函数,则a等于…(  )

A.0                              B.1                              C.-1                           D.±1

思路分析:本题主要考查正弦函数的奇偶性,利用函数奇偶性的定义解题即可.

由于函数f(x)=sinx-|a|,x∈R为奇函数,则有f(0)=0,即|a|=0,所以a=0.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:函数f(x)=
1
3
(1-x)
且|f(a)|<2,命题Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅,
(1)分别求命题P、Q为真命题时的实数a的取值范围;
(2)当实数a取何范围时,命题P、Q中有且仅有一个为真命题;
(3)设P、Q皆为真时a的取值范围为集合S,T={y|y=x+
m
x
,x∈R,x≠0,m>0}
,若?RT⊆S,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)已知函数:
①f(x)=-x2+2x,
②f(x)=cos(
π
2
-
πx
2
),
③f(x)=|x-1|
1
2
.则以下四个命题对已知的三个函数都能成立的是(  )
命题p:f(x)是奇函数;       
命题q:f(x+1)在(0,1)上是增函数;
命题r:f(
1
2
1
2
;            
命题s:f(x)的图象关于直线x=1对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题P:函数数学公式且|f(a)|<2,命题Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅,
(1)分别求命题P、Q为真命题时的实数a的取值范围;
(2)当实数a取何范围时,命题P、Q中有且仅有一个为真命题;
(3)设P、Q皆为真时a的取值范围为集合S,数学公式,若?RT⊆S,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题P:函数f(x)=
1
3
(1-x)
且|f(a)|<2,命题Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅,
(1)分别求命题P、Q为真命题时的实数a的取值范围;
(2)当实数a取何范围时,命题P、Q中有且仅有一个为真命题;
(3)设P、Q皆为真时a的取值范围为集合S,T={y|y=x+
m
x
,x∈R,x≠0,m>0}
,若?RT⊆S,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

已知 (x∈R).

(Ⅰ)求函数的最小值和最小正周期;k*s*5u

(Ⅱ)设ABC的内角ABC的对边分别为abc,且cf (C)=0,若向量m=(1,sinA)与向量n=(2,sinB)共线,求ab的值.

查看答案和解析>>

同步练习册答案