精英家教网 > 高中数学 > 题目详情
(2013•昌平区一模)已知函数:
①f(x)=-x2+2x,
②f(x)=cos(
π
2
-
πx
2
),
③f(x)=|x-1|
1
2
.则以下四个命题对已知的三个函数都能成立的是(  )
命题p:f(x)是奇函数;       
命题q:f(x+1)在(0,1)上是增函数;
命题r:f(
1
2
1
2
;            
命题s:f(x)的图象关于直线x=1对称.
分析:①中函数是二次函数,由二次函数的对称轴是x=1且开口向下,即能判出函数是非奇非偶函数,由函数在(1,+∞)上的单调性可知向左平移1个单位后的单调性;
②中的函数经诱导公式化简后变为sin
π
2
x
,然后逐一对四个命题进行判断;
③中的函数直接利用奇偶性定义判断奇偶性,求出f(x+1)可判出f(x+1)为偶函数,从而得到在(0,1)上是增函数,利用图象平移判出函数f(x)的对称轴.
解答:解:①函数f(x)=-x2+2x图象是开口向下的抛物线,对称轴方程是x=1,所以该函数不是奇函数;函数f(x)在
(1,+∞)上为减函数,而函数f(x+1)的图象是把函数f(x)的图象左移1个单位得到的,所以函数f(x+1)在(0,1)上是减函数;
f(
1
2
)=-(
1
2
)2+2×
1
2
=
3
4
1
2
;f(x)的图象关于直线x=1对称.
②f(x)=cos(
π
2
-
πx
2
)=sin
π
2
x
,该函数是定义在R上的奇函数;f(x+1)=sin
π
2
(x+1)=cos
π
2
x

当x∈(0,1)时,
π
2
x∈(0,
π
2
)
,所以f(x+1)在(0,1)上是减函数;f(
1
2
)=cos(
π
2
-
π
4
)
=cos
π
4

=
2
2
1
2
;当x=1时,f(1)=sin
π
2
=1
,所以f(x)的图象关于直线x=1对称.
③f(x)=|x-1|
1
2
,由于f(-x)=|-x-1|
1
2
=|x+1|
1
2
≠|x-1|
1
2
=f(x),所以f(x)不是奇函数;
f(x+1)=|x+1-1|
1
2
=|x|
1
2
,在(0,1)上是增函数;f(
1
2
)=|
1
2
-1|
1
2
=(
1
2
)
1
2
=
2
2
1
2

因为f(x+1)=|x|
1
2
是偶函数,图象关于x=0对称,所以f(x)的图象关于直线x=1对称.
综上,对三个函数都成立的命题是r和s.
故选C.
点评:本题考查了命题的真假的判断与应用,考查了复合函数的奇偶性,单调性及对称性,考查了函数值的计算,解答此题的关键是熟练掌握函数图象的平移,此题是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•昌平区一模)复数
2i
1-i
的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)已知函数f(x)=
1
3
x3-a2x+
1
2
a
(a∈R).
(Ⅰ)若a=1,求函数f(x)在[0,2]上的最大值;
(Ⅱ)若对任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)设定义域为R的函数f(x)满足以下条件;则以下不等式一定成立的是(  )
(1)对任意x∈R,f(x)+f(-x)=0;
(2)对任意x1,x2∈[1,a],当x2>x1时,有f(x2)>f(x1).
①f(a)>f(0)
②f(
1+a
2
)>f(
a

③f(
1-3a
1+a
)>f(-3)
④f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)为了解甲、乙两厂的产品的质量,从两厂生产的产品中随机抽取各10件,测量产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:
规定:当产品中的此种元素含量满足≥18毫克时,该产品为优等品.
(Ⅰ)试用上述样本数据估计甲、乙两厂生产的优等品率;
(Ⅱ)从乙厂抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数ξ的分布列及其数学期望E(ξ);
(Ⅲ)从上述样品中,各随机抽取3件,逐一选取,取后有放回,求抽到的优等品数甲厂恰比乙厂多2件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)已知椭圆M的对称轴为坐标轴,离心率为
2
2
,且抛物线y2=4
2
x
的焦点是椭圆M的一个焦点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中点P在椭圆M上,O为坐标原点.求点O到直线l的距离的最小值.

查看答案和解析>>

同步练习册答案