精英家教网 > 高中数学 > 题目详情
(2013•昌平区一模)已知椭圆M的对称轴为坐标轴,离心率为
2
2
,且抛物线y2=4
2
x
的焦点是椭圆M的一个焦点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中点P在椭圆M上,O为坐标原点.求点O到直线l的距离的最小值.
分析:(Ⅰ)设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
,易求椭圆的焦点,从而可得c值,由离心率可得a,由b2=a2-c2可求得b值;
(Ⅱ)分情况进行讨论:当直线l存在斜率时设直线方程为y=kx+m,与椭圆方程联立消掉y得x的二次方程,有△>0①,设A、B、P点的坐标分别为(x1,y1)、(x2,y2)、(x0,y0),
由四边形OAPB为平行四边形及韦达定理可把x0,y0表示为k,m的式子,代入椭圆方程关于k,m的方程,从而利用点到直线的距离公式点O到直线l的距离为k的函数,根据函数结构特点即可求得其最小值;当直线l不存在斜率时点O到直线l的距离易求,综上即可得到答案.
解答:解:(I)设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)

由已知抛物线的焦点为(
2
,0),则c=
2
,由e=
2
2
,得a=2,∴b2=2,
所以椭圆M的方程为
x2
4
+
y2
2
=1

(II)当直线l斜率存在时,设直线方程为y=kx+m,
则由
y=kx+m
x2
4
+
y2
2
=1
消去y得,(1+2k2)x2+4kmx+2m2-4=0,
△=16k2m2-4(1+2k2)(2m2-4)=8(2+4k2-m2)>0,①
设A、B、P点的坐标分别为(x1,y1)、(x2,y2)、(x0,y0),
则:x0=x1+x2=-
4km
1+2k2
,y0=y1+y2=k(x1+x2)+2m=
2m
1+2k2

由于点P在椭圆M上,所以
x02
4
+
y02
2
=1

从而
4k2m2
(1+2k2)2
+
2m2
(1+2k2)2
=1
,化简得2m2=1+2k2,经检验满足①式.
又点O到直线l的距离为:
d=
|m|
1+k2
=
1
2
+k2
1+k2
=
1-
1
2(1+k2)
1-
1
2
=
2
2
,当且仅当k=0时等号成立,
当直线l无斜率时,由对称性知,点P一定在x轴上,
从而点P的坐标为(-2,0)或(2,0),直线l的方程为x=±1,所以点O到直线l的距离为1.
所以点O到直线l的距离最小值为
2
2
点评:本题考查直线与圆锥曲线的位置关系、椭圆方程的求解,考查分类讨论思想、函数思想,韦达定理、判别式解决该类题目的基础,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•昌平区一模)复数
2i
1-i
的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)已知函数f(x)=
1
3
x3-a2x+
1
2
a
(a∈R).
(Ⅰ)若a=1,求函数f(x)在[0,2]上的最大值;
(Ⅱ)若对任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)设定义域为R的函数f(x)满足以下条件;则以下不等式一定成立的是(  )
(1)对任意x∈R,f(x)+f(-x)=0;
(2)对任意x1,x2∈[1,a],当x2>x1时,有f(x2)>f(x1).
①f(a)>f(0)
②f(
1+a
2
)>f(
a

③f(
1-3a
1+a
)>f(-3)
④f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)为了解甲、乙两厂的产品的质量,从两厂生产的产品中随机抽取各10件,测量产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:
规定:当产品中的此种元素含量满足≥18毫克时,该产品为优等品.
(Ⅰ)试用上述样本数据估计甲、乙两厂生产的优等品率;
(Ⅱ)从乙厂抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数ξ的分布列及其数学期望E(ξ);
(Ⅲ)从上述样品中,各随机抽取3件,逐一选取,取后有放回,求抽到的优等品数甲厂恰比乙厂多2件的概率.

查看答案和解析>>

同步练习册答案