精英家教网 > 高中数学 > 题目详情
9.函数y=f(x)的定义域是[-1,3],则函数g(x)=$\frac{f(2x-1)}{x+2}$的定义域是(  )
A.[0,2]B.[-3,5]C.[-3,-2]∪(-2,5]D.(-2,2]

分析 利用函数的定义域,列出不等式组求解即可.

解答 解:函数y=f(x)的定义域是[-1,3],
要使函数g(x)=$\frac{f(2x-1)}{x+2}$有意义,
可得 $\left\{\begin{array}{l}{-1≤2x-1≤3}\\{x+2≠0}\end{array}\right.$,
解得:0≤x≤2.
∴函数g(x)的定义域是[0,2).
故选:A.

点评 本题考查函数的定义域的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.曲线y=$\frac{3x+4}{x+2}$在点(-1,1)处的切线方程为(  )
A.y=2x+3B.y=2x+1C.y=-2x-1D.y=-2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知f(x)=x2-2ax(0≤x≤1),求f(x)的最小值;
(2)已知函数f(x)=x2+3x-5,x∈[t,t+1],若f(x)的最小值为h(t),写出h(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|1≤x<7},B={x|2<x<10},C={x|5-a<x≤a}.
(Ⅰ)求A∪B,(∁RA)∩B;
(Ⅱ)若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点D为等腰直角三角形ABC斜边AB的中点,则下列等式中恒成立的是(  )
A.$\overrightarrow{CD}=\frac{{\overrightarrow{CA}}}{{|\overrightarrow{CA}|}}+\frac{{\overrightarrow{CB}}}{{|\overrightarrow{CB}|}}$B.$\overrightarrow{AC}=\overrightarrow{AC}•\overrightarrow{AB}$C.$\overrightarrow{BC}=\overrightarrow{BC}•\overrightarrow{BA}$D.$(\overrightarrow{CA}+\overrightarrow{CB})•(\overrightarrow{CA}-\overrightarrow{CB})=0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点C(3,$\frac{7}{4}$),其左右焦点分别为F1,F2,且F2(3,0),长轴的左右两个端点为A,B.
(1)求椭圆E的方程;
(2)设点C关于原点的对称点为D.
①若点P在椭圆E上,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由;
②若N为直线x=$\frac{16}{3}$上一点(在x轴上方),AN与椭圆交于点M,且$\overrightarrow{AN}$•$\overrightarrow{M{F}_{2}}$=0,记$\overrightarrow{AM}$=λ$\overrightarrow{MN}$,求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解关于x的不等式:ax2-2ax-1<0,已知常数a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.P是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上的点,它到左焦点的距离等于它到右焦点的距离的4倍,求P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(2x+1)的最大值为2,f(4x+1)的最大值为a,则实数a=2.

查看答案和解析>>

同步练习册答案