精英家教网 > 高中数学 > 题目详情
如图所示,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则

(1)当AC,BD满足条件________时,四边形EFGH为菱形;
(2)当AC,BD满足条件________时,四边形EFGH是正方形.
(1)AC=BD,(2)AC=BD且AC⊥BD
易知EH∥BD∥FG,且EH=BD=FG,同理EF∥AC∥HG,且EF=AC=HG,显然四边形EFGH为平行四边形.要使平行四边形EFGH为菱形需满足EF=EH,即AC=BD;要使四边形EFGH为正方形需满足EF=EH且EF⊥EH,即AC=BD且AC⊥BD.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥PABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点

(1)求证:CE∥平面PAD;
(2)求证:平面EFG⊥平面EMN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四面体ABCD中作截面PQR,若PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.

求证:M、N、K三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证:
 
(1)C1、O、M三点共线;
(2)E、C、D1、F四点共面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,分别为的中点,.

(1)证明:∥面
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DEBCDCBCDEBC.

(1)证明:EO∥平面ACD
(2)证明:平面ACD⊥平面BCDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线l与平面α不垂直,则在平面α内与直线l垂直的直线有________条.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知abc是三条互不重合的直线,αβ是两个不重合的平面,给出
四个命题:①abbα,则aα;②ab?αaβbβ,则αβ;③aαaβ,则αβ;④aαbα,则ab.
其中正确的命题个数是 (  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面,直线,且有,则下列四个命题正确的个数为(    )
①若;②若;③若;④若
A.B.C.D.

查看答案和解析>>

同步练习册答案