精英家教网 > 高中数学 > 题目详情
已知m>0时,10x=lg(10m)+lg(
1m
)
,则x的值为
0
0
分析:由题意利用对数的运算性质可得10x=lg10=1,由此求得x 的值.
解答:解:已知m>0时,10x=lg(10m)+lg(
1
m
)
,故有10x=lg10=1,则x=0,
故答案为 0.
点评:本题主要考查对数的运算性质的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O1:(x-1)2+y2=9,⊙O2x2+y2-10x+m2-2m+17=0(m∈R)
(Ⅰ)求⊙O2半径的最大值;
(Ⅱ)当⊙O2半径最大时,试判断⊙O1和⊙O2的位置关系;
(Ⅲ)⊙O2半径最大时,如果⊙O1和⊙O2相交.
(1)求⊙O1和⊙O2公共弦所在直线l1的方程;
(2)设直线l1交x轴于点F,抛物线C以坐标原点O为顶点,以F为焦点,直线l2:y=k(x-3)(k≠0)与抛物线C相交于A、B两点,证明:
OA
OB
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O1:(x-1)2+y2=9,⊙O2x2+y2-10x+m2-2m+17=0(m∈R)
(Ⅰ)判断⊙O1和⊙O2的位置关系;
(Ⅱ)当⊙O2半径最大时,(1)求⊙O1和⊙O2公共弦所在直线l1的方程;
(2)设直线l1交x轴于点F,抛物线C以坐标原点为顶点,以F为焦点,直线l2经过(3,0)与抛物线C相交于A、B两点,设∠AOB=α(O为坐标原点),求α最大时cosα的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)当m=45时,求两圆的公共弦所在直线的方程和公共弦的长.

查看答案和解析>>

同步练习册答案