精英家教网 > 高中数学 > 题目详情

已知椭圆C的方程为数学公式+数学公式=1(a>b>0),离心率e=数学公式,上焦点到直线y=数学公式的距离为数学公式,直线l与y轴交于一点P(0,m),与椭圆C交于相异两点A,B且数学公式=t数学公式
(1)求椭圆C的方程;
(2)若数学公式+t数学公式=4数学公式,求m的取值范围•

解:(1)∵椭圆离心率e=,焦点到直线y=的距离为

∴a=1,c=

∴椭圆C的方程为
(2)∵=t,∴(1+t)=+t
+t=4,∴1+t=4,∴t=3
设直线l与椭圆交点A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆方程,消去y可得(k2+2)x2+2kmx+(m2-1)=0
∴△=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0①,x1+x2=,x1x2=
=3,∴-x1=3x2,∴x1+x2=-2x2,x1x2=-3
∴3(x1+x22+4x1x2=0
∴3(2+4×=0
∴4k2m2+2m2-k2-2=0
时,上述式子不成立,时,
∵t=3,∴k≠0,∴

经检验符合①式
即所求m的取值范围为(-1,-)∪(,1).
分析:(1)根据椭圆离心率e=,焦点到直线y=的距离为,可求椭圆的几何量,从而可得椭圆C的方程;
(2)先确定t=3,再将直线y=kx+m代入椭圆方程,利用韦达定理,建立等式关系,从而可得,由此可求m的取值范围.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查向量知识的运用,正确运用韦达定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a≥2b>0)

(1)求椭圆C的离心率的取值范围;
(2)若椭圆C与椭圆2x2+5y2=50有相同的焦点,且过点M(4,1),求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
a2
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆为椭圆C的“伴随圆”,椭圆C的短轴长为2,离心率为
6
3

(Ⅰ)求椭圆C及其“伴随圆”的方程;
(Ⅱ)若直线l与椭圆C交于A,B两点,与其“伴随圆”交于C,D两点,当|CD|=
13
 时,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知椭圆C的方程为:
x2
a2
+
y2
2
=1 (a>0)
,其焦点在x轴上,离心率e=
2
2

(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
OP
=
OM
+2
ON
,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为-
1
2
,求证:x02+2
y
2
0
为定值.
(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)已知椭圆C的方程为
y2
a2
+
x2
b2
=1(a>b>0),离心率e=
2
2
,上焦点到直线y=
a2
c
的距离为
2
2
,直线l与y轴交于一点P(0,m),与椭圆C交于相异两点A,B且
AP
=t
PB

(1)求椭圆C的方程;
(2)若
OA
+t
OB
=4
OP
,求m的取值范围•

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x 2
4
+
y2
3
=1,过C的右焦点F的直线与C相交于A、B两点,向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共线,则直线AB的方程是(  )

查看答案和解析>>

同步练习册答案