精英家教网 > 高中数学 > 题目详情
已知椭圆C的方程为
x 2
4
+
y2
3
=1,过C的右焦点F的直线与C相交于A、B两点,向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共线,则直线AB的方程是(  )
分析:由F(1,0)设A(x1,y1),B(x2,y2),由
OA
-
OB
m
-
OF
共线可得A,B的坐标满足的关系,根据KAB=
y1-y2
x1-x2
可求直线AB的斜率,进而可求直线AB的方程
解答:解:由题意可得,F(1,0)设A(x1,y1),B(x2,y2
OF
=(1,0)
m
-
OF
=(-2,-4)
AB
=
OA
OB
=(x1-x2,y1-y2
OA
-
OB
m
-
OF
共线
∴-2(y1-y2)+4(x1-x2)=0
KAB=
y1-y2
x1-x2
=2
故所求直线AB的方程为y=2(x-1)即2x-y-2=0
故选A
点评:本题主要考查了利用向量的共线的坐标表示,直线方程的求解,解题的关键是寻求A,B坐标的关系
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,椭圆C的左、右焦点分别为F1(-1,0)、F2(1,0),斜率为k(k≠0)的直线l经过点F2,交椭圆于A、B两点,且△ABF1的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点E为x轴上一点,
AF2
F2B
(λ∈R),若
F1F2
⊥(
EA
BE
)
,求点E的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县二模)已知椭圆C的方程为
x2
a2
+
y2
2
= 1
(a>0),其焦点在x轴上,点Q(
2
2
7
2
)
为椭圆上一点.
(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
OP
=
OM
+2
ON
,其中M、N是椭圆C上的点,直线OM与ON的斜率之积为-
1
2
,求证:
x
2
0
+2
y
2
0
为定值;
(3)在(2)的条件下探究:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河北区一模)已知椭圆C的方程为 
x2
a2
+
y2
b2
=1 
(a>b>0),过其左焦点F1(-1,0)斜率为1的直线交椭圆于P、Q两点.
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共线,求椭圆C的方程;
(Ⅱ)已知直线l:x+y-
1
2
=0,在l上求一点M,使以椭圆的焦点为焦点且过M点的双曲线E的实轴最长,求点M的坐标和此双曲线E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C的方程为
x 2
4
+
y2
3
=1,过C的右焦点F的直线与C相交于A、B两点,向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共线,则直线AB的方程是(  )
A.2x-y-2=0B.2x+y-2=0C.2x-y+2=0D.2x+y+2=0

查看答案和解析>>

同步练习册答案