精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x-a-lnx(a∈R).
(1)若f(x)≥0恒成立,求实数a的取值范围;
(2)证明:若0<x1<x2,则lnx1-lnx2>1-$\frac{{x}_{2}}{{x}_{1}}$.

分析 (1)法一:求出函数的导数,解关于导函数的不等式,求出函数的单调区间,得到函数的最小值,从而求出a的范围即可;
法二:分离参数,得到a≤x-lnx(x>0),令g(x)=x-lnx(x>0),根据函数的单调性求出g(x)的最小值,从而求出a的范围即可;
(2)先求出lnx≤x-1,得到ln$\frac{{x}_{2}}{{x}_{1}}$<$\frac{{x}_{2}}{{x}_{1}}$-1,(0<x1<x2),整理即可.

解答 解:(1)解法1:f′(x)=$\frac{x-1}{x}$(x>0),
令f′(x)>0,得x>1;令f′(x)<0,得0<x<1,
即f(x)在(0,1)单调递减,在(1,+∞)上单调递增,
可知f(x)的最小值是f(1)=1-a≥0,解得a≤1;
解法2:f(x)≥0,即a≤x-lnx(x>0),
令g(x)=x-lnx(x>0),
则g′(x)=$\frac{x-1}{x}$,(x>0),
令g′(x)>0,得x>1;令g′(x)<0,得0<x<1,
即g(x)在(0,1)单调递减,在(1,+∞)上单调递增,
可知g(x)的最小值是g(1)=1,可得a≤1;
(2)证明:取a=1,知f(x)=x-1-lnx,
由(1)知lnx-x+1≤0,即lnx≤x-1,
∴ln$\frac{{x}_{2}}{{x}_{1}}$<$\frac{{x}_{2}}{{x}_{1}}$-1,(0<x1<x2),
整理得lnx1-lnx2>1-$\frac{{x}_{2}}{{x}_{1}}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若一个圆锥的轴截面(过圆锥顶点和底面直径的截面)是面积为$\sqrt{3}$的等边三角形,则该圆锥的体积为$\frac{\sqrt{3}}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列点不在曲线ρ=cosθ上的是(  )
A.($\frac{1}{2}$,$\frac{π}{3}$)B.(-$\frac{1}{2}$,$\frac{2π}{3}$)C.($\frac{1}{2}$,-$\frac{π}{3}$)D.($\frac{1}{2}$,-$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a>0,f(x)=a2lnx-x2+ax,若不等式e≤f(x)≤3e+2对任意x∈[1,e]恒成立,则实数a的取值范围为[e+1,$\frac{\sqrt{{6(e+1)}^{2}+2}-e}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\frac{1+2lnx}{{x}^{2}}$.
(1)求f(x)的最大值;
(2)令g(x)=ax2-2lnx,当x>0时,f(x)的最大值为M,g(x)=M有两个不同的根,求a的取值范围;
(3)存在x1,x2∈(1,+∞),且x1≠x2,使得|f(x1)-f(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知不等式|x+1|+|x-1|<8的解集为A.
(1)求集合A;
(2)若?a,b∈A,x∈(0,+∞),不等式a+b<x+$\frac{9}{x}$+m恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex
(Ⅰ)当x>-1时,证明:f(x)>$\frac{(x+1)^{2}}{2}$;
(Ⅱ)当x>0时,f(1-x)+2lnx≤a(x-1)+1恒成立,求正实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.制作一个面积为1m2,形状为直角三角形的铁架框,有下列四种长度的铁管供选择,较经济的(够用,又耗材最少)是(  )
A.4.6 mB.4.8 mC.5 mD.5.2 m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,四边形MNQP被线段NP切割成两个三角形分别为△MNP和△QNP,若MN⊥MP,$\sqrt{2}$sin(∠MPN+$\frac{π}{4}$)=$\sqrt{2}$,QN=2QP=2,则四边形MNQP的最大值为(  )
A.$\frac{5}{4}-\sqrt{2}$B.$\frac{5}{4}+\sqrt{2}$C.$\frac{5}{2}-\sqrt{2}$D.$\frac{5}{2}+\sqrt{2}$

查看答案和解析>>

同步练习册答案