精英家教网 > 高中数学 > 题目详情
已知函数 ,给出下列命题:①必是偶函数;②当时,的图象关于直线对称;③若,则在区间上是增函数;④有最大值. 其中正确的命题序号是(   )
A.③B.②③ C.②④D.①②③
A
解:当a≠0时,f(x)不具有奇偶性,①错误;
令a=0,b=-2,则f(x)=|x2-2|,
此时f(0)=f(2)=2,
但f(x)=|x2-2|的对称轴为y轴而不关于x=1对称,②错误;
又∵f(x)=|x2-2ax+b|=|(x-a)2+b-a2|,图象的对称轴为x=a.
根据题意a2-b≤0,即f(x)的最小值b-a2≥0,
f(x)=(x-a)2+(b-a2),显然f(x)在[a,+∞]上是增函数,
故③正确;
又f(x)无最大值,故④不正确.
答案:③.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数
(1)当时,求的极值;
(2)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列对应关系:(   )
的平方根。
的倒数。

中的数平方。
其中是的映射的是:    
A.①③B.②④C.③④D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

映射f:A→B,如果满足集合B中的任意一个元素在A中都有原象,则称为“满射”.已知集合A中有4个元素,集合B中有3个元素,那么从A到B的不同满射的个数为
A.24B.6C.36D.72

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知映射,其中,对应法则为,若对实数,在集合中没有对应的元素,则的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

汽车和自行车分别从地和地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知米.(汽车开到地即停止)
(Ⅰ)经过秒后,汽车到达处,自行车到达处,设间距离为,试写出关于的函数关系式,并求其定义域.
(Ⅱ)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
某漁业公司年初用98万元购买一艘捕魚船,第一年各种支出费用12万元,以后每年都增加
4万元,每年捕魚收益50万元.
(1)该公司第几年开始获利?
(2)若干年后,有两种处理方案:
①年平均获利最大时,以26万元出售该渔船;
②总纯收入获利最大时,以8万元出售渔船.
问哪种处理方案最合算?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数 为偶函数,则实数        

查看答案和解析>>

同步练习册答案