精英家教网 > 高中数学 > 题目详情

在边长为a的正方形ABCD中,E,F分别为BC,CD的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥B-AEF,如图所示.
(Ⅰ)在三棱锥B-AEF中,求证:AB⊥EF;
(Ⅱ)求四棱锥E-AMNF的体积.

(I)证明:在三棱锥B-AEF中,
因为AB⊥BE,AB⊥BF,BE∩BF=B,
所以AB⊥平面BEF.…..(3分)
又EF?平面BEF,
所以AB⊥EF.…..(6分)
(II)解:因为在△ABF中,M、N分别为AB、BF的中点,
所以四边形AMNF的面积是△ABF面积的.…..(8分)
又三棱锥E-ABF与四棱锥E-AMNF的高相等,
所以,四棱锥E-AMNF的体积是三棱锥E-ABF的体积的
因为VE-ABF=VA-BEF
所以.…..(10分)
因为
所以
故四棱锥E-AMNF的体积为.…..(13分)
分析:(I)在三棱锥B-AEF中,因为AB⊥BE,AB⊥BF,BE∩BF=B,所以AB⊥平面BEF.由此能够证明AB⊥EF.
(II)因为在△ABF中,M、N分别为AB、BF的中点,所以四边形AMNF的面积是△ABF面积的.因为三棱锥E-ABF与四棱锥E-AMNF的高相等,所以,四棱锥E-AMNF的体积是三棱锥E-ABF的体积的,因为VE-ABF=VA-BEF,所以.由此能够求出四棱锥E-AMNF的体积.
点评:本题考查在三棱锥B-AEF中,求证AB⊥EF,求四棱锥E-AMNF的体积.解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在边长为a的正方形ABCD中内依次作内接正方形AiBiCiDi(i=1,2,3,…),使内接正方形与相邻前一个正方形的一边夹角为a,求所有正方形的面积之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在边长为a的正方形组成的网格中,设椭圆C1、C2、C3的离心率分别为e1、e2、e3,则e1、e2、e3的关系为
e1<e2=e3
e1<e2=e3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)如图,在边长为a的正方形内有不规则图形Ω.向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m,n,则图形Ω面积的估计值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为a的正方形ABCD中内依次作内接正方形AiBiCiDi(i=1,2,3,…),使内接正方形与相邻前一个正方形的一边夹角为a,求所有正方形的面积之和.

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第92-93课时):第十二章 极限-数列的极限、数学归纳法(解析版) 题型:解答题

在边长为a的正方形ABCD中内依次作内接正方形AiBiCiDi(i=1,2,3,…),使内接正方形与相邻前一个正方形的一边夹角为a,求所有正方形的面积之和.

查看答案和解析>>

同步练习册答案