精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+bx+c(b,c∈R),已知不论α,β为何实数,恒有f(cosα)≥0,f(2+sinβ)≤0.
(1)求证:b+c=-1;
(2)求实数c的取值范围.
考点:二次函数的性质
专题:计算题,函数的性质及应用
分析:(1)根据cosα∈[-1,1],2+sinβ∈[1,3],结合条件可得f(1)≥0,且f(1)≤0,即 f(1)=0恒成立,从而证得结论.
(2)根据f(3)≤0,以及b+c+1=0,即得c≥3.
解答: (1)证明:∵cosα∈[-1,1],2+sinβ∈[1,3],
又∵f(cosα)≥0,f(2+sinβ)≤0恒成立.
∴f(1)≥0,且f(1)≤0,
即f(1)=0恒成立.
∴b+c=-1.
(2)解:∵由(1)得,f(3)≤0,
∴9+3b+c≤0,
∴9+3(-1-c)+c≤0,
∴c≥3.
则实数c的取值范围是[3,+∞).
点评:本题主要考查正弦函数、余弦函数的值域,二次函数的性质的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“存在x0∈R,2 x0≤0”的否定是(  )
A、不存在x0∈R,2 x0>0
B、存在x0∈R,2 x0≥0
C、对任意的x∈R,2x≤0
D、对任意的x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
x2+3x+2a
x
,x∈[2,+∞)
(1)当a=
1
2
时,求函数f(x)的最小值;
(2)若对任意x∈[2,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一颗正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,现将这颗骰子抛掷三次,观察向上的点数,则三次点数之和等于15的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、命题“设a,b,c∈R,若ac2>bc2则a>c”的逆命题为真命题
B、f(x)=
x+1
x-1
,g(x)=
(x+1)(x-1)
,则f(x)和g(x)为同一函数
C、设p:“所有正数的对数均为正数”,q:“sin3>cos3”,则(¬p)∧q为真
D、命题“?x∈R,x2-2x+3>0”的否定是“?x∈R,x2-2x+3<0”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知底面边长为
3
,侧棱长为6的正四棱柱的各顶点均在同一个球面上,其对角线为直径,则该球的体积为(  )
A、
256
3
π
B、7
42
π
C、
500
3
π
D、
6
π

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上(其中m,n>0),则
1
m
+
2
n
的最小值等于(  )
A、16B、12C、9D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线l的极坐标方程为θ=
π
3
(ρ∈R),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α为参数),求直线l与曲线C的交点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β∈(0,π),则α+β=
π
2
是sinα=cosβ的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案