精英家教网 > 高中数学 > 题目详情

圆x2+y2+Dx+Ey+F=0关于直线l1:x-y+4=0与直线l2:x+3y=0都对称,则D=________,E=________.

6    -2
分析:由圆关于两直线都对称,得到两直线都过圆心,即两直线交点为圆心,联立两直线方程求出交点坐标,确定出圆心坐标,利用圆心坐标公式即可求出D与E的值.
解答:由题设知直线l1,l2的交点为已知圆的圆心,
,得到
∴圆心坐标为(-3,1),
∴-=-3,-=1,
则D=6,E=-2.
故答案为:6;-2
点评:此题考查了直线与圆的位置关系,以及关于点、直线对称的圆的方程,根据题意得到两直线的交点即为圆心是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆x2+y2+Dx+Ey=0的圆心在直线x+y=l上则D与E的关系是(  )
A、D+E=2B、D+E=1C、D+E=-1D、D+E=-2

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出的四个命题中:
①对任意的n∈N*,点Pn(n,an)都在直线y=2x+1上是数列an为等差数列的充分不必要条件;
②“m=-2”是直线(m+2)x+my+1=0与“直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③设圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)与坐标轴有4个交点A(x1,0),B(x2,0),C(0,y1),D(0,y2),则有x1x2-y1y2=0;
④将函数y=cos2x的图象向右平移
π
3
个单位,得到函数y=sin(2x-
π
6
)
的图象.
其中是真命题的有
 
(将你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)关于直线x-y=0对称,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)下列命题:
①线性回归方程对应的直线
y
=
b
x+
a
至少经过其样本数据点(x1,yl),(x1,yl),…,(xn,yn)中的一个点;
②设f(x)为定义在R上的奇函数,当x>0时,f(x)=
x
.则当x<0时,f(x)=
-x

③若圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)与坐标轴的交点坐标分别为(x1,0),(x2,0),(0,yl),(0,y2),则x1x2-y1y2=0;
④若圆锥的底面直径为2,母线长为
2
,则该圆锥的外接球表面积为4π.
其中正确命题的序号为.
③④
③④
.(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2+Dx+Ey+F=0的圆心在y轴上,则必有(  )
A、D=0B、E=0C、F=0D、D=0,且E=0

查看答案和解析>>

同步练习册答案