精英家教网 > 高中数学 > 题目详情
2.在平面内,$\overrightarrow{A{B_1}}⊥\overrightarrow{A{B_2}},|\overrightarrow{O{B_1}}|=3,|\overrightarrow{O{B_2}}|=4,\overrightarrow{AP}=\overrightarrow{A{B_1}}+\overrightarrow{A{B_2}}$,若$1<|\overrightarrow{OP}|<2$,则$|\overrightarrow{OA}|$的取值范围是(  )
A.$(2\sqrt{3},\sqrt{17})$B.$(\sqrt{17},\sqrt{21})$C.$(\sqrt{17},2\sqrt{6})$D.$(\sqrt{21},2\sqrt{6})$

分析 建立坐标系,设B1(a,0),B2(0,b),则P(a,b),O(x,y),利用已知条件向量的模,以及$1<|\overrightarrow{OP}|<2$,转化求解$|\overrightarrow{OA}|$的取值范围即可.

解答 解:由$\overrightarrow{A{B_1}}⊥\overrightarrow{A{B_2}},|\overrightarrow{O{B_1}}|=3,|\overrightarrow{O{B_2}}|=4,\overrightarrow{AP}=\overrightarrow{A{B_1}}+\overrightarrow{A{B_2}}$,如图:建立坐标系,
设B1(a,0),B2(0,b),则P(a,b),O(x,y),
可得:$\left\{\begin{array}{l}{\sqrt{(x-a)^{2}+{y}^{2}}=3}\\{\sqrt{{x}^{2}+(y-b)^{2}}=4}\end{array}\right.$,
可得(x-a)2+(y-b)2+x2+y2=9+16=25,
$|\overrightarrow{OP}|$=$\sqrt{(x-a)^{2}+(y-b)^{2}}$=$\sqrt{25-({x}^{2}+{y}^{2})}$,
又$|\overrightarrow{OA}|$=$\sqrt{{x}^{2}+{y}^{2}}$,$|\overrightarrow{OP}|$=$\sqrt{25-|\overrightarrow{OA}{|}^{2}}$∈(1,2),
∴1$<25-{\overrightarrow{OA}}^{2}<4$,⇒21$<{\overrightarrow{OA}}^{2}<24$⇒$\sqrt{21}<|\overrightarrow{OA}|<2\sqrt{6}$.
故选:D.

点评 本题考查向量在几何中的应用,向量的模的求法,考查转化思想以及数形结合思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.i2017=i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=a-\frac{2}{{{2^x}+1}}({x∈R,a∈R})$.
(1)求证:f(x)在(-∞,+∞)上是增函数;
(2)设函数f(x)存在反函数f-1(x),且f(x)是奇函数,若方程f-1(x)=log2(x+t)有实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的公比q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在正四面体A-BCD中,所有棱长为1,E,F分别是AC,AD上的动点,求截面△BEF周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知z为纯虚数,且(2+i)z=1+ai3(i为虚数单位),则复数a+z在复平面内对应的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点P是双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$上任意一点,则P到两渐近线距离的乘积是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点M为棱长是2$\sqrt{2}$的正方体ABCD-A1B1C1D1的内切球O球面上的动点,点N为B1C1的中点,若满足DM⊥BN,则动点M的轨迹的长度为(  )
A.$\frac{{2\sqrt{5}π}}{5}$B.$\frac{{4\sqrt{5}π}}{5}$C.$\frac{{2\sqrt{10}π}}{5}$D.$\frac{{4\sqrt{10}π}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=aex•cosx-xsinx,且曲线y=f(x)在(0,f(0))处的切线与x-y=0平行.
(1)求a的值;
(2)当$x∈[{-\frac{π}{2},\frac{π}{2}}]$时,试探究函数y=f(x)的零点个数,并说明理由.

查看答案和解析>>

同步练习册答案