(本题满分12分)如图,四棱锥
的底面
是矩形,![]()
,且侧面
是正三角形,平面
平面
,
![]()
(Ⅰ)求证:
;
(Ⅱ)在棱
上是否存在一点
,使得二面角
的大小为45°.若存在,试求
的值,若不存在,请说明理由.
(Ⅰ)证明见解析;
(Ⅱ)在棱
上存在点
,当
时,使得二面角
的大小等于45°
【解析】本试题主要是考查了线线垂直的证明,以及二面角的求解的综合运用。
(1)根据已知条件可得,线面垂直判定定理可以得到线线垂直的证明。
(2)需要合理建立空间直角坐标系,然后设出两个半平面的法向量,然后借助于向量的数量积公式,表示得到向量的夹角,然后利用相等或者互补得到结论。
解:取
中点
,则由
,得
,又平面
平面
,且平面
平面
,所以
平面
.以
为原点,建立空间直角坐标系
(如图).
![]()
则
……………………2分
(Ⅰ)证明:∵![]()
……………………………………………………………………4分
∴
,
∴
,即
.…………………………………6分
(Ⅱ)假设在棱
上存在一点
,不妨设
,
则点
的坐标为
,……………………………8分
∴![]()
设
是平面
的法向量,则
![]()
不妨取
,则得到平面
的一个法向量
.………10分
又面
的法向量可以是![]()
要使二面角
的大小等于45°,
则
45°=![]()
可解得
,即![]()
故在棱
上存在点
,当
时,使得二面角
的大小等于45° …12分
科目:高中数学 来源:2014届江西高安中学高二上期末考试理科数学试卷(解析版) 题型:解答题
(本题满分12分)
如图所示的几何体是由以正三角形
为底面的直棱柱被平面
所截而得.
,
为
的中点.
![]()
(1)当
时,求平面
与平面
的夹角的余弦值;
(2)当
为何值时,在棱
上存在点
,使
平面
?
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖北省八市高三3月联考理科数学试卷(解析版) 题型:解答题
(本题满分12分)如图,在长方体
中,已知上下两底面为正方形,且边长均为1;侧棱
,为
中点,
为
中点,
为
上一个动点.
![]()
(Ⅰ)确定
点的位置,使得
;
(Ⅱ)当
时,求二面角
的平
面角余弦值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广西桂林中学高三7月月考试题理科数学 题型:解答题
(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.
![]()
⑴求异面直线PD与AE所成角的大小;
⑵求证:EF⊥平面PBC ;
⑶求二面角F—PC—B的大小..
查看答案和解析>>
科目:高中数学 来源:2011年湖南省招生统一考试文科数学 题型:解答题
(本题满分12分)
如图3,在圆锥
中,已知
的直径
的中点.
(I)证明:![]()
(II)求直线和平面
所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源:2010年海南省高三五校联考数学(文) 题型:解答题
(本题满分12分)
如图,三棱锥S—ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC。
(1)求证:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱锥S—ABC的体积。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com