精英家教网 > 高中数学 > 题目详情
9、不等式x2-2x+3≤a2-2a-1在R上的解集是∅,则实数a的取值范围是
{a|-1<a<3}
分析:把不等式的右边移项到左边合并后,设不等式的坐标为一个开口向上的抛物线,由不等式的解集为空集,得到此二次函数与x轴没有交点即根的判别式小于0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围.
解答:解:由x2-2x+3≤a2-2a-1移项得:
x2-2x+3-a2+2a+1≤0,因为不等式的解集为∅,
所以△=4-4(-a2+2a+1)<0,
即a2-2a-3<0,分解因式得:(a-3)(a+1)<0,
解得:-1<a<3,
则实数a的取值范围是:{a|-1<a<3}.
故答案为:{a|-1<a<3}
点评:此题考查学生掌握二次函数与x轴有无交点的判断方法,考查了一元二次不等式的解法,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集是B,不等式x2+ax+b<0的解集是A∩B,那么a+b等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集是B,不等式x2+ax+b<0的解集是A∩B,那么a+b=
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式-x2+2x+3<0的解集为(  )
A、{x|x<-3或x>1}B、{x|-3<x<1}C、{x|x<-1或x>3}D、{x|-1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x2+2x-3+a≤0(-5≤x≤0)恒成立,则a的取值范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式
x2+2x-3-x2+x+6
<0所得解集是
{x|x<-3或-2<x<1或x>3}
{x|x<-3或-2<x<1或x>3}

查看答案和解析>>

同步练习册答案