【题目】A市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了140位市民进行调查,调查结果统计如下:
支持 | 不支持 | 总计 | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合计 | 70 | 140 |
(I)根据已知数据,把表格数据填写完整;
(II)利用(1)完成的表格数据回答下列问题:
(ⅰ)能否在犯错误的概率不超过0.001的前提下认为性别与支持申办足球世界杯有关;
(ⅱ)已知在被调查的支持申办足球世界杯的男性市民中有5位退休老人,其中2位是教师,现从这5位退休老人中随机抽取3人,求至多有1位老师的概率。
附:,其中
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)答案见解析;(Ⅱ)答案见解析.
【解析】分析:(I)结合题意完成列联表即可;
(II)(ⅰ)由题得:,则能在犯错误的概率不超过的前提下性别与支持申办足球世界杯有关.
(ⅱ)由题意可得从5人中任意取3人的情况有10个,其中至多有1位教师的情况有7个,故所求的概率.
详解:(I)由题意完成列联表如下:
支持 | 不支持 | 总计 | |
男性市民 | 40 | 20 | 60 |
女性市民 | 30 | 50 | 80 |
合计 | 70 | 70 | 140 |
(II)(ⅰ)由题得:
所以能在犯错误的概率不超过的前提下性别与支持申办足球世界杯有关.
(ⅱ)记5人分别为,其中表示教师,从5人中任意取3人的情况有,,,,,
其中至多有1位教师的情况有,,,,,
,共7个,
故所求的概率.
科目:高中数学 来源: 题型:
【题目】已知抛物线C的顶点为原点,焦点F与圆的圆心重合.
(1)求抛物线C的标准方程;
(2)设定点,当P点在C上何处时,的值最小,并求最小值及点P的坐标;
(3)若弦过焦点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列两个命题:命题p1:a,b∈(0,+∞),当a+b=1时, + =4;命题p2:函数y=ln 是偶函数.则下列命题是真命题的是( )
A.p1∧p2
B.p1∧(¬p2)
C.(¬p1)∨p2
D.(¬p1)∨(¬p2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)是R上的偶函数,当x1 , x2∈(0,+∞)时,都有(x1﹣x2)[f(x1)﹣f(x2)]<0.设 ,则( )
A.f(a)>f(b)>f(c)
B.f(b)>f(a)>f(c)
C.f(c)>f(a)>f(b)
D.f(c)>f(b)>f(a)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,AC∩BD=O,点P在底面的射影为点O,PO=3,点E为线段PD中点.
(1)求证:PB∥平面AEC;
(2)若点F为侧棱PA上的一点,当PA⊥平面BDF时,试确定点F的位置,并求出此时几何体F﹣BDC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个内角A,B,C的对边分别是a,b,c,若向量 =(a+c,sinB), =(b﹣c,sinA﹣sinC),且 ∥ . (Ⅰ)求角A的大小;
(Ⅱ)设函数f(x)=tanAsinωxcosωx﹣cosAcos2ωx(ω>0),已知其图象的相邻两条对称轴间的距离为 ,现将y=f(x)的图象上各点向左平移 个单位,再将所得图象上各点的横坐标伸长为原来的2倍,得到函数y=g(x)的图象,求g(x)在[0,π]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( )
A. 3 971B. 3 972C. 3 973D. 3 974
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆C与x轴相切于点T(2,0),与y轴的正半轴相交于A,B两点(A在B的上方),且AB=3.
(1)求圆C的方程;
(2)直线BT上是否存在点P满足PA2+PB2+PT2=12,若存在,求出点P的坐标,若不存在,请说明理由;
(3)如果圆C上存在E,F两点,使得射线AB平分∠EAF,求证:直线EF的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乡大学生携手回乡创业,他们引进某种果树在家乡进行种植试验.他们分别在五种不同的试验田中种植了这种果树100株并记录了五种不同的试验田中果树的死亡数,得到如下数据:
试验田 | 试验田1 | 试验田2 | 试验田3 | 试验田4 | 试验田5 |
死亡数 | 23 | 32 | 24 | 29 | 17 |
(Ⅰ)求这五种不同的试验田中果树的平均死亡数;
(Ⅱ)从五种不同的试验田中随机取两种试验田的果树死亡数,记为x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com