精英家教网 > 高中数学 > 题目详情
已知数列{an}的各项为正数,其前n项和Sn满足Sn=(
an+12
)2
,设bn=10-an(n∈N)
(1)求证:数列{an}是等差数列,并求{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,求Tn的最大值.
(3)求数列{|bn|}(n∈N)的前n项和.
分析:(1)将已知的关于和与项的关系变形,然后仿写一个新的等式,将两个式子相减得到项的关系,利用等差数列的定义得到证明.
(2)求出数列{bn}的通项,令通项小于等于0求出n的范围,即从第几项为负,得到Tn的最大值.
(3)由(2),通过对n的讨论,利用绝对值的意义,将绝对值符号去掉,将数列{|bn|}(n∈N)的前n项和问题转化为数列{bn}的前n项和,再利用等差数列的前n项和公式求出.
解答:解:(1)证明:∵Sn=(
an+1
2
)
2

即4Sn=an2+2an+1
4Sn-1=an-12+2an-1+1
两个式子相减得
an-an-1=2
数列{an}是以1为首项,以2为公差的等差数列
∴an=2n-1
(2)∴bn=10-an=-2n+11
令bn≤0
得n≥
11
2

∴数列{bn}中前5项都是正项,从第六项开始为负项
∴Tn的最大值((Tnmax=T5=25
(3)当n≤5时,|b1|+|b2|+..+|bn|=b1+b2+..+bn=10n-n2
当n>5时,|b1|+|b2|+..+|bn|=b1+b2+…+b5-(b6+b7+…+bn
=10×5-52-(10n-n2-10×5+52)=n2-10n+50
Vn=
10n-n2(n≤5)
n2-10n+50(n>5)
点评:求数列的前n项和问题,一般先求出数列的通项,然后根据通项的特点选择合适的求和方法,常用的求和方法有:公式法、倒序相加法、错位相减法、裂项相消法、分组法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例2.已知数列{an}的通项公式是an=
2n
3n+1
(n∈N*,n≤8)
,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)
3
5
(2)
11
17

查看答案和解析>>

科目:高中数学 来源:江西省赣县中学2011届高三适应性考试数学理科试题 题型:013

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是

[  ]
A.

8

B.

16

C.

32

D.

36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

例2.已知数列{an}的通项公式是数学公式,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)数学公式(2)数学公式

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第6章 数列):6.1 数列定义与通项(解析版) 题型:解答题

例2.已知数列{an}的通项公式是,则下列各数是否为数列中的项?如果是,是第几项?如果不是,为什么?(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知数列{an}的通项为an=3n+8,下列各选项中的数为数列{an}中的项的是


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    36

查看答案和解析>>

同步练习册答案