精英家教网 > 高中数学 > 题目详情
(2013•沈阳二模)选修4-5:不等式选讲
已知函数f(x)=|x-1|.
(1)解不等式:1≤f(x)+f(x-1)≤2;
(2)若a>0,求证:f(ax)-af(x)≤f(a).
分析:(1)利用绝对值不等式的性质可得f(x)+f(x-1)=|x-1|+|x-2|≥1,故只须解不等式f(x)+f(x-1)≤2即可,通过对x分x≤1,1<x≤2,x>2三类讨论,去掉绝对值符号,解之即可;
(2)当a>0时,求得f(ax)-af(x)=|ax-1|-|a-ax|,利用绝对值不等式的性质可得|ax-1|-|a-ax|≤|ax-1+a-ax|=f(a),从而可证结论.
解答:解:(1)由题f(x)+f(x-1)=|x-1|+|x-2|≥|x-1+2-x|=1.
因此只须解不等式f(x)+f(x-1)≤2.…(2分)
当x≤1时,原不式等价于-2x+3≤2,即
1
2
≤x≤1.
当1<x≤2时,原不式等价于1≤2,即1<x≤2.
当x>2时,原不式等价于2x-3≤2,即2<x≤
5
2

综上,原不等式的解集为{x|
1
2
≤x≤
5
2
}.…(5分)
(2)由题f(ax)-af(x)=|ax-1|-a|x-1|.
当a>0时,f(ax)-af(x)
=|ax-1|-|ax-a|
=|ax-1|-|a-ax|
≤|ax-1+a-ax|
=|a-1|
=f(a).…(10分)
点评:本题考查:绝对值不等式的解法,掌握双绝对值不等式的性质,通过分类讨论去掉绝对值符号是解题的关键,考查转化思想与分类讨论思想的综合应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•沈阳二模)复数z=1-
1+i
i3
(i为虚数单位)对应的点在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•沈阳二模)已知非空集合A,B,全集U=A∪B,集合M=A∩B,集合N=(CUB)∩(CUA),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•沈阳二模)执行如图所示的程序框图,若输入a=2,则输出的结果为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•沈阳二模)椭圆C:
x2
4
+y2=1
与动直线l:2mx-2y-2m+1=0(m∈R),则直线l与椭圆C交点的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•沈阳二模)“a=1”是“(1+ax)6的展开式的各项系数之和为64”的(  )

查看答案和解析>>

同步练习册答案