(本题满分10分)已知a>0,b>0,m>0,n>0,求证:am+n+bm+n ≥ ambn+anbm.
见解析.
【解析】
试题分析:利用作差比较,因式分解的方法,分类讨论思想,对a,b的大小关系讨论,可证不等式成立.
试题解析:证明:am+n+bm+n-(ambn+anbm)
=(am+n-ambn)-(anbm-bm+n)=am(an-bn)-bm(an-bn)=(am-bm)(an-bn).![]()
当a>b时,am>bm,an>bn,∴(am-bm)(an-bn)>0;
当a<b时,am<bm,an<bn,∴(am-bm)(an-bn)>0;
当a=b时,am=bm,an=bn,∴(am-bm)(an-bn)=0.
综上,(am-bm)(an-bn)≥0,即am+n+bm+n≥ambn+anbm.
考点:比较法证明不等式
科目:高中数学 来源:2015届吉林省长春市高二下学期期中考试理科数学试卷(解析版) 题型:解答题
为了解某班关注NBA(美国职业篮球)是否与性别有关,对某班48人进行了问卷调查得到如下的列联表:
| 关注NBA | 不关注NBA | 合计 |
男生 |
| 6 |
|
女生 | 10 |
|
|
合计 |
|
| 48 |
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为
.
(1)请将上面的表补充完整(不用写计算过程),并判断是否有95%的把握认为关注NBA与性别有关?说明你的理由;
(2)设甲,乙是不关注NBA的6名男生中的两人,丙,丁,戊是关注NBA的10名女生中的3人,从这5人中选取2人进行调查,求:甲,乙至少有一人被选中的概率.
答题参考
P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
![]()
查看答案和解析>>
科目:高中数学 来源:2015届吉林省高二下学期期中考试理科数学试卷(解析版) 题型:解答题
如图,点
为斜三棱柱
的侧棱
上一点,
交
于点
,
交
于点
.
![]()
(1) 求证:
;
(2) 在任意
中有余弦定理:
.
拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明
查看答案和解析>>
科目:高中数学 来源:2014-2015学年辽宁省沈阳市高二上学期10月月考数学试卷(解析版) 题型:选择题
记f(n)为自然数n的个位数字,an = f(n2)- f(n).则a1+a2+a3+L+a2016的值为( )
A.2 B.6 C.8 D.10
查看答案和解析>>
科目:高中数学 来源:2014-2015学年辽宁省沈阳市高二上学期10月月考数学试卷(解析版) 题型:选择题
若关于x的不等式ax2+bx-2>0的解集是
,则ab等于( )
A.-24 B.24 C.14 D.-14
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com