精英家教网 > 高中数学 > 题目详情
5.函数f(x)=x•e-x在以下哪个区间是增函数(  )
A.[-1,0]B.[2,8]C.[1,2]D.[0,2]

分析 求出原函数的导函数,由导函数大于0求取x的集合得答案.

解答 解:由f(x)=xe-x
得f′(x)=e-x-x•e-x=e-x(1-x).
由f′(x)>0,得x<1.
∴函数f(x)=xe-x的单调增区间是(-∞,1).
故函数f(x)在[-1,0]递增,
故选:A.

点评 本题考查了利用导数研究函数的单调性,考查了函数的单调区间与导函数的符号之间的关系,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=log${\;}_{\frac{1}{3}}$(-x2+2x)  的单调减区间为(  )
A.(-∞,1)B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知四边形ABCD中,AB∥CD,AD=AB=BC=$\frac{1}{2}$CD=2,E为DC中点,连接AE,将△DAE沿AE翻折到△D1AE.
(1)证明:BD1⊥AE;
(2)若CD1=$\sqrt{10}$,求二面角D1-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设抛物线y2=4x有内接三角形OAB,其垂心(三条边上的高所在直线的交点)恰为抛物线的焦点,求这个三角形的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=$\sqrt{{x}^{2}-2x-3}$的定义域为集合A,函数g(x)=x-a(0<x<4)的值域为集合B.
(Ⅰ)求集合A,B;
(Ⅱ)若集合A,B满足A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数g(x)=$\frac{lnx}{x}$.
(Ⅰ)求函数y=g(x)的图象在x=$\frac{1}{e}$处的切线方程;
(Ⅱ)求y=g(x)的最大值;
(Ⅲ)令f(x)=ax2+bx-x•(g(x))(a,b∈R).若a≥0,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在△ABC中,内角A,B,C所对的边分别是a,b,c,且c=2,2sinA=$\sqrt{3}$acosC.
(1)求角C的大小;
(2)若2sin2A+sin(2B+C)=sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,M,N分别是AB,PC的中点,若ABCD是平行四边形.
(1)求证:MN∥平面PAD.
(2)若PA=AD=2a,MN与PA所成的角为30°.求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某皮革公司旗下有许多手工足球作坊为其生产足球,公司打算生产两种不同类型的足球,一款叫“飞火流星”,另一款叫“团队之星”.每生产一个“飞火流星”足球,需要橡胶100g,皮革300g;每生产一个“团队之星”足球,需要橡胶50g,皮革400g.且一个“飞火流星”足球的利润为40元,一个“团队之星”足球的利润为30元.现旗下某作坊有橡胶材料2.5kg,皮革12kg.
(1)求该作坊可获得的最大利润;
(2)若公司规定各作坊有两种方案可供选择,方案一:作坊自行出售足球,则所获利润需上缴10%方案二:作坊选择由公司代售,则公司不分足球类型,一律按相同的价格回收,作坊每个球获得30元的利润.若作坊所生产的足球可全部售出,请问该作坊选择哪种方案更划算?请说明理由.

查看答案和解析>>

同步练习册答案