精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=2x-$\frac{x^2}{π}$+cosx,设x1,x2∈(0,π),x1≠x2,且f(x1)=f(x2),若x1,x0,x2成等差数列,则(  )
A.f'(x0)>0B.f'(x0)=0
C.f'(x0)<0D.f'(x0)的符号不能确定

分析 由题意和求导公式及法则求出f′(x)、f″(x),由余弦函数的单调性判断出f″(x)在(0,π)上递增,求出f″(0)和f″(π)的值,判断出f′(x)的单调性,求出f′(0)和f′(π)的值后,根据题意判断出f(x)的单调性,由等差中项的性质求出x0,结合f(x)单调性和f′(x)的符号得到答案.

解答 解:由题意得,f′(x)=$2-\frac{2x}{π}-sinx$,
∴f″(x)=$-\frac{2}{π}-cosx$在∈(0,π)上递增,
又f″(0)=$-\frac{2}{π}-1<0$,f″(π)=$-\frac{2}{π}+1>0$,
∴f′(x)=$2-\frac{2x}{π}-sinx$在∈(0,π)上先减后增,
∵又f′(0)=2>0,f′(π)=2-2=0,
且x1,x2∈(0,π),x1≠x2,f(x1)=f(x2),
∴函数f(x)在(0,π)上不单调,
∵x1,x0,x2成等差数列,∴x0=$\frac{1}{2}$(x1+x2),
则f'(x0)<0,
故选C.

点评 本题考查等差中项的性质,求导公式及法则,以及导数与函数单调性的关系的应用,考查化简、变形能力,分析问题、解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知样本数据3,2,1,a的平均数为2,则样本的标准差是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-2x-15>0},B={x|x-6<0}.命题p:“m∈A”;命题q:“m∈B”.
(1)若命题p为真命题,求实数m的取值范围;
(2)若命题“p∨q”和“p∧q”中恰有一个真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线方程为y2=4x,直线L过定点P(-2,1),斜率为k,k为何值时,直线L与抛物线y2=4x只有一个公共点;有两个公共点;没有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点F1,F2为椭圆$\frac{x^2}{9}+\frac{y^2}{25}=1$的两个焦点,过F1的直线交椭圆于A,B两点,且|AB|=8,则|AF2|+|BF2|=(  )
A.20B.18C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点A是抛物线$y=\frac{1}{4}{x^2}$的对称轴与准线的交点,点F为该抛物线的焦点,点P在抛物线上,且满足|PF|=m|PA|,当M取得最小值时,点P恰好在以A,F为焦点的双曲线上,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{2}+1}}{2}$C.$\sqrt{2}+1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.样本(x1,x2,…,xm)的平均数$\stackrel{\overline{x}}{\;}$,样本(y1,y2,…,yn)的平均数为$\overline{y}$($\overline{x}$≠$\overline{y}$).若样本(x1,x2,…,xm,y1,y2,…,yn)的平均数$\overline{z}$=a$\overline{x}$+(1-a)$\overline{y}$,其中0<a≤$\frac{1}{2}$,则m,n的大小关系为(  )
A.m<nB.m≤nC.m>nD.m≥n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数h(x)=f(x)g(x),g(x)=f(x+a),a为常数,a∈[0,π],设计一个定义域为R的函数y=f(x),及一个a值,使得h(x)=cos2x.你设计的f(x)=sinx+cosx,a=$\frac{π}{2}$(写出满足题意的一种情况即可)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知不等式$({x+y})({\frac{1}{x}+\frac{a}{y}})≥9$对于任意xy>0恒成立,求正实数a的范围a≥4.

查看答案和解析>>

同步练习册答案