【题目】设有红、黑、白三种颜色的球各10个。现将它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色球都有,且甲、乙两个袋子中三种颜色球数之积相等。问:共有多少种放法?
科目:高中数学 来源: 题型:
【题目】设a,b是两个非零向量.
A.若|a+b|=|a|-|b|,则a⊥b
B.若a⊥b,则|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,则存在实数λ,使得a=λb
D.若存在实数λ,使得a=λb,则|a+b|=|a|-|b|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用二分法计算函数f(x)=x3+x2﹣2x﹣2的一个正数零点的近似值(精确到0.1)为( )
参考数据:
f(1)=﹣2 | f(1.5)=0.625 |
f(1.25)=﹣0.984 | f(1.375)=﹣0.260 |
f(1.438)=0.165 | f(1.4065)=﹣0.052 |
A.1.2
B.1.3
C.1.4
D.1.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙、丙3项任务,甲需要2人承担,乙、丙各需要1人承担,从10人中选派4人承担这三项任务,不同的选法有( )
A. 1260 B. 2520
C. 2025 D. 5040
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果集合U={1,2,3,4,5,6,7,8},A={2,5,8},B={1,3,5,7},那么(UA)∩B等于( )
A.{5}
B.{1,3,4,5,6,7,8}
C.{2,8}
D.{1,3,7}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,三内角A,B,C的对边分别为a,b,c,
命题p:若a>acosB+bcosA,则A>C;
命题q:若A>B,则sinA>sinB,
给出下列四个结论:
①命题q的逆命题、否命题、逆否命题是真命题;
②命题“p∧q”是假命题;
③命题“p∨¬q”是假命题;
④命题“¬p∨¬q”是假命题,
其中所有正确结论法的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在空间直角坐标系中,点A的坐标为(0,2,1),点B的坐标为(﹣2,0,3),则线段AB的中点坐标为( )
A.(﹣1,1,2)
B.(﹣2,2,4)
C.(﹣1,﹣1,1)
D.(1,﹣1,2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com