精英家教网 > 高中数学 > 题目详情
如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.
(Ⅰ)证明:A1C⊥平面BED;
(Ⅱ)(理)求二面角A1-DE-B的大小.
(文)异面直线A1C与AB所成的角.
分析:(Ⅰ)以D为坐标原点,射线DA为x轴的正半轴,建立空间直角坐标系D-xyz.用坐标表示向量,从而可证
A1C
DB
=0
A1C
DE
=0
,故有A1C⊥平面DBE.
(Ⅱ)先求平面的法向量,利用向量n=(x,y,z)是平面DA1E的法向量,则n⊥
DE
n⊥
DA1
.再用向量的夹角公式求解即可
(文)
A1C
=(-2,2,-4),
AB
=(0,2,0)
再用向量的夹角公式求解即可求异面直线A1C与AB所成的角.
解答:解:
以D为坐标原点,射线DA为x轴的正半轴,
建立如图所示直角坐标系D-xyz.
依题设,B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).
DE
=(0,2,1),
DB
=(2,2,0)
A1C
=(-2,2,-4),
DA1
=(2,0,4)

(Ⅰ)因为
A1C
DB
=0
A1C
DE
=0
,A1C⊥BD,A1C⊥DE.
又DB∩DE=D,
所以A1C⊥平面DBE.
(Ⅱ)设向量n=(x,y,z)是平面DA1E的法向量,则n⊥
DE
n⊥
DA1

故2y+z=0,2x+4z=0.
令y=1,则z=-2,x=4,n=(4,1,-2).?n,
A1C
等于二面角A1-DE-B的平面角,cos?
n
A1C
>=
n
A1C
|
n
||
A1C
|
=
14
42

所以二面角A1-DE-B的大小为arccos
14
42

(文)
A1C
=(-2,2,-4),
AB
=(0,2,0)

cos<
A1C
AB
> =
4
4
6
=
6
6

∴异面直线A1C与AB所成的角为arccos
6
6
点评:本题以正四棱柱为载体,考查线面位置关系,考查线线角,面面角,关键是构建空间直角坐标系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:2013届安徽省高二上学期期中考试理科数学 题型:解答题

(本小题满分12分)如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB的中点.

(1)求证:AC1∥平面CNB1

(2)求四棱锥C-ANB1A1的体积.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:安徽省期中题 题型:解答题

如图是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1﹣ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源:安徽省期中题 题型:解答题

如图是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C1﹣ANB1A1的体积.

查看答案和解析>>

同步练习册答案