精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(bx+c)lnx在x=
1
e
处取得极值,且在x=1处的切线的斜率为1.
(Ⅰ)求b,c的值及f(x)的单调减区间;
(Ⅱ)设p>0,q>0,g(x)=f(x)+x2,求证:5g(
3p+2q
5
)≤3g(p)+2g(q).
(Ⅰ)f′(x)=blnx+(bx+c)•
1
x
,(1分)
f′(
1
e
)=0

bln
1
e
+(
b
e
+c)•e=0

即-b+b+ec=0,
∴c=0,
∴f'(x)=blnx+b,
又f'(1)=1,
∴bln1+b=1,
∴b=1,
综上,b=1,c=0,(3分)
f(x)=xlnx,由定义域知x>0,f'(x)=lnx+1,
f′(x)<0∴0<x<
1
e

∴f(x)的单调减区间为(0,
1
e
)
.(5分)
(Ⅱ)先证5f(
3p+2q
5
)≤3f(p)+2f(q)

即证5
3p+2q
5
•ln
3p+2q
5
≤3plnp+2qlnq

即证3pln
3p+2q
5p
≤2qln
5q
3p+2q
,(6分)
t=
q
p
,∵p>0,q>0,∴t>0,
即证ln
3+2t
5
2t
3
•ln
5t
3+2t

h(t)=ln
3+2t
5
-
2t
3
•ln
5t
3+2t

h(t)=ln
3+2t
5
-
2
3
tln(5t)+
2t
3
ln(3+2t)

h′(t)=
5
3+2t
2
5
-
2
3
ln(5t)-
2t
3
5
5t
+
2
3
ln(3+2t)+
2t
3
2
3+2t
=
2
3
ln
3+2t
5t
,(8分)
①当3+2t>5t即0<t<1时,ln
3+2t
5t
>0
,即h'(t)>0
h(t)在(0,1)上递增,∴h(t)<h(1)=0,(9分)
②当3+2t<5t,即t>1时,ln
3+2t
5t
<0,即h′(t)<0,
h(t)在(1,+∞)上递减,
∴h(t)<h(1)=0,(10分)
③当3+2t=5t,即t=1时,h(t)=h(1)=0,
综合①②③知h(t)≤0,
即ln
3+2t
5
2t
3
•ln
5t
3+2t
,(11分)
即5f(
2p+3q
5
)≤3f(p)+2f(q),
∵5•(
3p+2q
5
2-(3p2+2q2)=
-6(p-q)2
5
≤0,
∴5•(
3p+2q
5
2≤3p2+2q2
综上,得5g(
3p+2q
5
)≤3g(p)+2g(q).(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案