精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知曲线上的动点到点的距离与到直线的距离相等.

1)求曲线的轨迹方程;

2)过点分别作射线交曲线于不同的两点,且以为直径的圆经过点.试探究直线是否过定点?如果是,请求出该定点;如果不是,请说明理由.

【答案】1;(2)过定点.

【解析】

1)根据题意得到,化简求得曲线的轨迹方程.

2)设直线的方程为,联立直线的的方程和曲线的方程,写出韦达定理,由于以为直径的圆过点,所以,利用向量数量积的坐标运算进行化简,由此求得的关系式,进而求得直线所过定点.

1)设,依题意,即,两边平方并化简得.所以曲线的轨迹方程为

2)直线经过定点.理由如下:

依题意的斜率不为零,所以设直线的方程为 消去.,则.由于以为直径的圆过点,所以,即,化简得,由于,所以,所以依题意,直线不经过,所以,所以,将其代入,即直线过定点.

综上所述,直线经过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】5张奖券中有2张是中奖的,先由甲抽1张,然后由乙抽1张,抽后不放回,求:

1)甲中奖的概率

2)甲、乙都中奖的概率

3)只有乙中奖的概率

4)乙中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台为宣传本市,随机对本市内岁的人群抽取了人,回答问题本市内著名旅游景点有哪些,统计结果如图表所示.

组号

分组

回答正确的人数

回答正确的人数占本组的频率

1

[15,25)

a

0.5

2

[25,35)

18

x

3

[35,45)

b

0.9

4

[45,55)

9

0.36

5

[55,65]

3

y

(1)分别求出的值;

(2)根据频率分布直方图估计这组数据的中位数(保留小数点后两位)和平均数;

(3)若第1组回答正确的人员中,有2名女性,其余为男性,现从中随机抽取2人,求至少抽中1名女性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,部分的对应关系如下表:

-2

-1

0

1

2

3

4

5

0

2

3

2

0

-1

0

2

1)求

2)数列满足,且对任意,点都在函数的图像上,求

3)若,其中,求此函数的解析式,并求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为α为参数),将C上每一点的横坐标保持不变,纵坐标变为原来的3倍,得曲线C1.以O为极点,x轴正半轴为极轴建立极坐标系.

1)求C1的极坐标方程

2)设MNC1上两点,若OMON,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点M到定点F1(2,0)F2(2,0)的距离之和为.

1)求动点M的轨迹C的方程;

2)设N(0,2),过点P(1,-2)作直线l,交曲线C于不同于N的两点AB,直线NANB的斜率分别为k1k2,求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为,其中为参数,在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.

1)求曲线C的普通方程与直线l的直角坐标方程;

2)若Q是曲线C上的动点,M为线段PQ的中点,求点M到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过定点,圆心在抛物线上,为圆轴的交点.

1)求圆半径的最小值;

2)当圆心在抛物线上运动时,是否为一定值?请证明你的结论;

3)当圆心在抛物线上运动时,记,求的最大值,并求此时圆的方程.

查看答案和解析>>

同步练习册答案