精英家教网 > 高中数学 > 题目详情
(2013•汕头一模)已知函数f(x)=x2-lnx.
(1)求曲线f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调递减区间:
(3)设函数g(x)=f(x)-x2+ax,a>0,若x∈(O,e]时,g(x)的最小值是3,求实数a的值.(e是为自然对数的底数)
分析:(1)欲求在点(1,f(1))处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.
(2)求出原函数的导函数,由导函数小于0求出自变量x在定义域内的取值范围,则原函数的单调减区间可求.
(3)求导函数,分类讨论,确定函数的单调性,利用函数g(x)的最小值是3,即可求出a的值.
解答:解:(1)∵f(x)=x2-lnx
∴f′(x)=2x-
1
x

∴f'(1)=1.
又∵f(1)=1,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y-1=x-1.即x-y=0.
(2)因为函数f(x)=2x2-lnx的定义域为(0,+∞),
由f′(x)=2x-
1
x
<0,得0<x<
2
2

所以函数f(x)=x2-lnx的单调递减区间是(0,
2
2
).
(3)∵g(x)=ax-lnx,∴g′(x)=
ax-1
x
,令g′(x)=0,得x=
1
a

①当
1
a
≥e时,即0<a≤
1
e
时,g′(x)=
ax-1
x
≤0在(0,e]上恒成立,
则g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,a=
4
e
(舍去),
②当0<
1
a
<e时,即a>
1
e
时,列表如下:

由表知,g(x)min=g(
1
a
)=1+lna=3,a=e2,满足条件.
综上,所求实数a=e2,使得当x∈(0,e]时g(x)有最小值3.
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程,考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•汕头一模)广东省汕头市日前提出,要提升市民素质和城市文明程度,促进经济发展有大的提速,努力实现“幸福汕头”的共建共享.现随机抽取50位市民,对他们的幸福指数进行统计分析,得到如下分布表:
幸福级别 非常幸福 幸福 不知道 不幸福
幸福指数(分) 90 60 30 0
人数(个) 19 21 7 3
(I)求这50位市民幸福指数的数学期望(即平均值);
(11)以这50人为样本的幸福指数来估计全市市民的总体幸福指数,若从全市市民(人数很多)任选3人,记ξ表示抽到幸福级别为“非常幸福或幸福”市民人数.求ξ的分布列;
(III)从这50位市民中,先随机选一个人.记他的幸福指数为m,然后再随机选另一个人,记他的幸福指数为n,求n<m+60的概率P.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)若曲线y=
x
与直线x=a,y=0所围成封闭图形的面积为a2.则正实数a=
4
9
4
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)△ABC中内角A,B,C的对边分别为a,b,c,向量
m
=(2sin
A
2
3
)
n
=(cosA,2cos2
A
4
-1)
,且
m
n

(I)求角A的大小;
(II)若a=
7
且△ABC的面积为
3
3
2
,求b十c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知函数f1(x)=e|x-a|f2(x)=ebx
(I)若f(x)=f1(x)+f2(x)-bf2(-x),是否存在a,b∈R,y=f(x)为偶函数.如果存在.请举例并证明你的结论,如果不存在,请说明理由;
〔II)若a=2,b=1.求函数g(x)=f1(x)+f2(x)在R上的单调区间;
(III )对于给定的实数?x0∈[0,1],对?x∈[0,1],有|f1(x)-f2(x0)|<1成立.求a的取值范围.

查看答案和解析>>

同步练习册答案