【题目】如图所示,在三棱锥
中,
,
,
,
,
.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)
为棱
上一点,试确定点
的位置,使得直线
与平面
所成角的正弦值为
.
【答案】(Ⅰ)见解析;(Ⅱ)
为棱
的中点
【解析】
(Ⅰ)由余弦定理得AC=
,由勾股定理得PA⊥AC,由PA⊥BC,得PA⊥平面ABC,由此能证明平面ABC⊥平面PAC.
(Ⅱ)设BC的中点为D,连结AD,以AB,AD,AP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量能求出E为棱AC的中点.
(Ⅰ)在
中,由余弦定理得![]()
,即
,
又
,
,
,
,
又
,
,
平面
,
平面
,
平面
,
平面
平面
.
(Ⅱ)设
的中点为
,连接
,
,
,又
,
.
如图所示,以
所在直线分别为
轴,
轴,
轴,建立空间直角坐标系
.
则
,
,
,
,
,
,
,
设
(
),则![]()
设平面
的法向量为
,则
,令
,可得
,
,设直线
与平面
所成角为
,
则
,
整理得
,
,
,
为棱
的中点.
![]()
科目:高中数学 来源: 题型:
【题目】某校进入高中数学竞赛复赛的学生中,高一年级有8人,高二年级有16人,高三年级有32人,现釆用分层抽样的方法从这些学生中抽取7人进行釆访.
(1)求应从各年级分别抽取的人数;
(2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为
,高二学生记为
,高三学生记为
,![]()
①列出所有可能的抽取结果;
②求抽取的2人均为高三年级学生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出两个球.
(1)共有多少个基本事件?
(2)摸出的两个都是白球的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知双曲线的中心在原点,焦点在x轴上,实轴长为4,渐近线方程为
.求双曲线的标准方程;
(2)过(1)中双曲线上一点P的直线分别交两条渐近于
两点,且P是线段AB的中点,求证:
为常数;
(3)我们知道函数
的图象是由双曲线
的图象逆时针旋转45°得到的,函数
的图象也是双曲线,请尝试写出曲线
的性质(不必证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程是
(
为参数),把曲线C的横坐标缩短为原来的
,纵坐标缩短为原来的一半,得到曲线
直线l的普通方程是
,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l的极坐标方程和曲线
的普通方程;
(2)记射线
(
)与
交于点A,与l交于点B,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com