精英家教网 > 高中数学 > 题目详情
(2008•上海一模)函数f(x)=
x,x∈P
-x,x∈M
,其中P、M为实数集R的两个非空子集,又规定A={y|y=f(x),x∈P},B={y|y=f(x),x∈M},给出下列三个判断:
①若P∩M=Φ,则A∩B=Φ;②若P∪M=R,则A∪B=R;③若P∪M≠R,则A∪B≠R.
其中错误的判断是
①、②
①、②
(只需填写序号).
分析:由函数的表达式知,可借助两个函数y=x与y=-x图象来研究,通过函数的定义域与函数的值域,结合集合的关系,分析可得答案.
解答:解:由题意知函数y=x,y=-x的图象如图所示.
①若P∩M=Φ,说明函数y=x,y=-x无相同的定义域的部分,但是两个函数的值域可以有相同的部分,则A∩B=Φ,不正确;
②若P∪M=R,说明函数y=x,y=-x的定义域的并集是R,但是两个函数的值域可以有相同的部分,如P=[0,+∞),M=(-∞,0],
则A∪B=[0,+∞),A∪B=R不正确;
③若P∪M≠R,说明函数y=x,y=-x的定义域的并集不是R,但是两个函数的值域可以有相同的部分,一定有A∪B≠R.
正确.
故答案为:①②.
点评:考查对题设条件的理解与转化能力,本题中题设条件颇多,审题费时,需仔细审题才能把握其脉络,故研究时借用两个函数的图象,借且图形的直观来来帮助判断命题的正误,以形助数,是解决数学问题常用的一种思路.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•上海一模)观察数列:
①1,-1,1,-1,…;
②正整数依次被4除所得余数构成的数列1,2,3,0,1,2,3,0,…;
③an=tan
3
,n=1,2,3,…
(1)对以上这些数列所共有的周期特征,请你类比周期函数的定义,为这类数列下一个周期数列的定义:对于数列{an},如果
存在正整数T
存在正整数T
,对于一切正整数n都满足
an+T=an
an+T=an
成立,则称数列{an}是以T为周期的周期数列;
(2)若数列{an}满足an+2=an+1-an,n∈N*,Sn为{an}的前n项和,且S2=2008,S3=2010,证明{an}为周期数列,并求S2008
(3)若数列{an}的首项a1=p,p∈[0,
1
2
),且an+1=2an(1-an),n∈N*,判断数列{an}是否为周期数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海一模)用1,2,3,4,5,6六个数字组成没有重复数字的六位数,要求任何相邻两个数字的奇偶不同,这样的六位数共有
72
72
个(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海一模)规定矩阵A3=A•A•A,若矩阵
1x
01
3
=
11
01
,则x的值是
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海一模)已知{an}为等差数列,a2+a8=12,则a5=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海一模)若函数y=f(x)存在反函数y=f-1(x),且函数y=tan
πx
6
-f(x)
的图象过点(2,
3
-3)
,则函数y=f-1(x)的图象一定过点
(3,2)
(3,2)

查看答案和解析>>

同步练习册答案