【题目】已知是双曲线的左右焦点,以为直径的圆与双曲线的一条渐近线交于点,与双曲线交于点,且均在第一象限,当直线时,双曲线的离心率为,若函数,则()
A. 1 B. C. 2 D.
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知椭圆C: 的离心率为, 是椭圆的两个焦点, 是椭圆上任意一点,且的周长是.
(1)求椭圆C的方程;
(2)设圆T: ,过椭圆的上顶点作圆T的两条切线交椭圆于E、F两点,当圆心在轴上移动且时,求EF的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱锥中,已知异面直线与所成的角为,给出下面三个命题:
:若,则此四棱锥的侧面积为;
:若分别为的中点,则平面;
:若都在球的表面上,则球的表面积是四边形面积的倍.
在下列命题中,为真命题的是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆锥曲线: (为参数)和定点, , 是此圆锥曲线的左、右焦点.
(1)以原点为极点,以轴的正半轴为极轴建立极坐标系,求直线的极坐标方程;
(2)经过且与直线垂直的直线交此圆锥曲线于, 两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在[-1,1]上的奇函数,在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函数f(x)的解析式;并判断f(x)在[-1,1]上的单调性(不要求证明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,BE,如图②所示,设点F是AB的中点.
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为AC上一点,求三棱锥B-DEG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样法,则40岁的以下的年龄段应抽取__________人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com