精英家教网 > 高中数学 > 题目详情
已知关于x的方程a(
1
4
)x-(
1
2
)x+2=0
在区间[-1,0]上有实数根,则实数a的取值范围是
[-1,0]
[-1,0]
分析:分离参数,再利用换元法,可得二次函数,利用配方法,结合函数的单调性,即可得出实数a的取值范围.
解答:解:分类参数可得:a=-2×(2x2+2x(x∈[-1,0])
令2x=t(t∈[
1
2
,1],a=-2t2+t=-2(t-
1
4
)
2
+
1
8

∴函数在[
1
2
,1]上单调减
∴a∈[-1,0]
故答案为:[-1,0]
点评:本题考查方程根的研究,解决问题的关键是分离参数,再采用换元法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的方程a(
1
4
)x-(
1
2
)x+2=0
在区间[-1,0]上有实数根,则实数a的取值范围是(  )
A、[0,
1
8
]
B、[-1,0)∪(0,
1
8
]
C、[-1,
1
8
]
D、[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程a•4x+b•2x+c=0(a≠0)中,常数a,b同号,b,c异号,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源:成都一模 题型:单选题

已知关于x的方程a(
1
4
)x-(
1
2
)x+2=0
在区间[-1,0]上有实数根,则实数a的取值范围是(  )
A.[0,
1
8
]
B.[-1,0)∪(0,
1
8
]
C.[-1,
1
8
]
D.[-1,0]

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省唐山一中高一(上)期中数学试卷(解析版) 题型:选择题

已知关于x的方程a•4x+b•2x+c=0(a≠0)中,常数a,b同号,b,c异号,则下列结论中正确的是( )
A.此方程无实根
B.此方程有两个互异的负实根
C.此方程有两个异号实根
D.此方程仅有一个实根

查看答案和解析>>

同步练习册答案