精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD中,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,直线PD与底面ABCD所成的角等于30°,(0<λ<1).

(1)若EF∥平面PAC,求λ的值;

(2)当BE等于何值时,二面角P-DE-A的大小为45°?

答案:
解析:

  解:(1)∵平面PBC平面PAC=AC,EF平面PBC,若EF∥平面PAC,

  则EF∥PC,又F是PB的中点,∴E为BC的中点,∴ 4分

  (2)以A为坐标原点,分别以AD、AB、AP所在直线为轴、轴、

  建立空间直角坐标系,则P(0,0,1),B(0,1,0),F(0,),

  D(,0,0),设,则E(,1,0)

  求得平面PDE的法向量(,平面ADE的法向量, 8分

  ∴

  解得(舍去),

  所以当时,二面角的大小45°. 12分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,CE∥AB.
(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,且CD与平面PAD所成的角为45°,求点D到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是正方形,AC∩BD=O,PA⊥底面ABCD,OE⊥PC于E.
(1)求证:PC⊥平面BDE;
(2)设PA=AB=2,求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥平面ABCD,点E,F分别是AB和PC的中点.
(1)求证:EF∥平面PAD;
(2)若CD=2PD=2AD=2,四棱锥P-ABCD外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=
12
CD=2,PA=2,M,E,F分别是PA,PC,PD的中点.
(1)证明:EF∥平面PAB;
(2)证明:PD⊥平面ABEF;
(3)求直线ME与平面ABEF所成角的正弦值.

查看答案和解析>>

同步练习册答案