分析 (1)不等式等价于①$\left\{\begin{array}{l}{x<-\frac{1}{2}}\\{-2x-1+(3-2x)≤6}\end{array}\right.$,或②$\left\{\begin{array}{l}{-\frac{1}{2}≤x≤\frac{3}{2}}\\{2x+1+(3-2x)≤6}\end{array}\right.$,或③$\left\{\begin{array}{l}{x>\frac{3}{2}}\\{2x+1+(2x-3)≤6}\end{array}\right.$.分别求出这3个不等式组的解集,再取并集,即得所求.
(2)由绝对值不等式的性质求出f(x)的最小值等于4,故有|a-1|>4,解此不等式求得实数a的取值范围.
解答 解:(1)不等式f(x)≤6 即|2x+1|+|2x-3|≤6,
∴①$\left\{\begin{array}{l}{x<-\frac{1}{2}}\\{-2x-1+(3-2x)≤6}\end{array}\right.$,或②$\left\{\begin{array}{l}{-\frac{1}{2}≤x≤\frac{3}{2}}\\{2x+1+(3-2x)≤6}\end{array}\right.$,或③$\left\{\begin{array}{l}{x>\frac{3}{2}}\\{2x+1+(2x-3)≤6}\end{array}\right.$.
解①得-1≤x<-$\frac{1}{2}$,解②得-$\frac{1}{2}$≤x≤$\frac{3}{2}$,解③得$\frac{3}{2}$<x≤2.
即不等式的解集为{x|-1≤x≤2}.
(2)∵f(x)=|2x+1|+|2x-3|≥|(2x+1)-(2x-3)|=4,即f(x)的最小值等于4,
∴|a-2|>4,解此不等式得a<-2或a>6.
故实数a的取值范围为(-∞,-2)∪(6,+∞).
点评 本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解.体现了分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(49)<f(64)<f(81) | B. | f(49)<f(81)<f(64) | C. | f(64)<f(49)<f(81) | D. | f(64)<f(81)<f(49) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{3}$] | B. | [$\frac{1}{3}$,$\frac{2}{3}$] | C. | [$\frac{2}{3}$,$\frac{4}{3}$] | D. | ($\frac{2}{3}$,$\frac{4}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 设平面ADF与平面BEC1的交线为l,则直线C1E与l相交 | |
| B. | 在棱A1C1上存在点N,使得三棱锥N-ADF的体积为$\frac{\sqrt{3}}{7}$ | |
| C. | 设点M在BB1上,当BM=1时,平面CAM⊥平面ADF | |
| D. | 在棱A1B1上存在点P,使得C1P⊥AF |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组号 | 分组 | 频数 | 频率 |
| 第1组 | [160,165) | 5 | 0.05 |
| 第2组 | [165,170) | ① | 0.35 |
| 第3组 | [170,175) | 30 | ② |
| 第4组 | [175,180) | 20 | 0.20 |
| 第5组 | [180,185] | 10 | 0.10 |
| 合计 | 100 | 1.00 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com