精英家教网 > 高中数学 > 题目详情
5.数列{an}满足a1=1,a2=2,且an+2=$\frac{{{a}_{n+1}}^{2}-7}{{a}_{n}}$(n∈N*),则$\sum_{i=1}^{100}$ai=1.

分析 利用a1=1,a2=2,且an+2=$\frac{{{a}_{n+1}}^{2}-7}{{a}_{n}}$(n∈N*),可得an+3=an.即可得出.

解答 解:∵a1=1,a2=2,且an+2=$\frac{{{a}_{n+1}}^{2}-7}{{a}_{n}}$(n∈N*),
∴a3=$\frac{{2}^{2}-7}{1}$=-3,a4=$\frac{(-3)^{2}-7}{2}$=1,a5=$\frac{{1}^{2}-7}{-3}$=2,…,
∴an+3=an
则$\sum_{i=1}^{100}$ai=33(a1+a2+a3)+a1=0+1=1.
故答案为:1.

点评 本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;,b>0})$的一条渐近线过点(2,2),则双曲线的离心率等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在底面为正方形的四棱锥P-ABCD中,侧面PAD⊥底面ABCD,PA⊥AD,PA=AD,则异面直线PB与AC所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{lnx,x>1}\end{array}\right.$,若方程f(x)-kx+$\frac{2}{3}$=0恰有四个不相等的实数根,则实数k的取值范围是($\frac{2}{3}$,$\frac{\root{3}{{e}^{2}}}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=-x3+3x2+9x+a,x∈[-2,2]的最小值为-2,则f(x)的最大值为(  )
A.25B.23C.21D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx.
(Ⅰ)y=kx与f(x)相切,求k的值;
(Ⅱ)证明:当a≥1时,对任意x>0不等式f(x)≤ax+$\frac{a-1}{x}$-1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.与双曲线2x2-y2=3有相同渐近线,且过点P(1,2)的双曲线的方程为(  )
A.2x2-$\frac{{y}^{2}}{4}$=1B.$\frac{{y}^{2}}{2}$-x2=1C.x2-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.调查某高中1000名学生的肥胖情况,得如表:
  偏瘦正常 肥胖 
 女生(人) 100163 
 男生(人) x 187 z
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15
(Ⅰ)求x的值
(Ⅱ)若用分层抽样的方法,从这批学生中随机抽取100名,问应在肥胖学生中抽多少名?
(Ⅲ)已知y≥194,z≥193,求肥胖学生中男生不少于女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,且函数F(x)=f(x)+x-a有且仅有两个零点,则实数a的取值范围是a≤1.

查看答案和解析>>

同步练习册答案