精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,a2=λ(λ<3且λ≠-2),且an+2=an+1+6an.(n∈N*).
(1)证明:数列{an+1+2an}与数列{an+1-3an}都是等比数列;
(2)若an+1>an(n∈N*)恒成立,求λ的取值范围.
分析:(1)由等比数列的定义,将题设中的递推公式变形成(an+2+2an+1):(an+1+2an)=常数的形式即得;同理可证得数列{an+1-3an}都是等比数列;
(2)利用(1)中的结论,先求出an+1-an的表达式,化简得
2λ+4
9-3λ
>(-
2
3
)n-1
,再利用指数函数的性质建立关于λ的不等关系,即可解得λ的取值范围.
解答:解析:(1)由an+2=an+1+6an得an+2+2an+1=3(an+1+2an)an+2-3an+1=-2(an+1-3an)…(4分)
由λ<3是λ≠-2知a2+2a1≠0,a2-3a1≠0,故有
an+2+2an-1
an+1+2an
=3,
an+2-3an+1
an+1-3an
=-2

∴数列{an+1+2an}与数列{an+1-3an}都是等比数列.…(6分)
(2)由(1)知:an+1+2an=(λ+2)3n-1①an+1-3an=(λ-3)(-2)n-1②…(7分)
由①-②得5an=(λ+2)3n-1+(3-λ)(-2)n-15an+1=(λ+2)3n+(3-λ)(-2)n…(8分)
∴5(an+1-an)=(2λ+4)•3n-1+(3λ-9)•(-2)n-1>0,又∵λ<3,
化简得
2λ+4
9-3λ
>(-
2
3
)n-1
…(10分)
对于任意n∈N*,总有(-
2
3
)n-1≤1
…(11分)
2λ+4
9-3λ
>1
,解之得1<λ<3…(12分)
点评:本题考查了等比数列的定义,以及数列与不等式的综合,综合运用了分离参数法,难度一般.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案