精英家教网 > 高中数学 > 题目详情
已知偶函数y=f(x)满足:当x≥2时,f(x)=(x-2)(a-x),a∈R,当x∈[0,2)时,f(x)=x(2-x)
(1)求当x≤-2时,f(x)的表达式;
(2)试讨论:当实数a、m满足什么条件时,函数g(x)=f(x)-m有4个零点,且这4个零点从小到大依次构成等差数列.
(1)设x≤-2则-x≥2,∴f(-x)=(-x-2)(a+x),
又∵y=f(x)为偶函数,∴f(-x)=f(x),
所以  f(x)=(-x-2)(a+x)…(3分)
(2)设f(x)-m的零点从左到右依次为x1,x2,x3,x4,即y=f(x)与y=m交点有4个,
(Ⅰ)a≤2时,
x1+x2=-2
2x2=x1+x3
x2+x3=0
,解得x1=-
3
2
x2=-
1
2
x3=
1
2
x4=
3
2

所以a≤2时,m=f(
1
2
)=
3
4
 …(5分)
(Ⅱ)2<a<4且m=
3
4
时,可得(
a
2
-1)2
3
4
,解得-
3
+2<a<
3
+2

所以当2<a<
3
+2
时,m=
3
4
…(7分)
(Ⅲ)当a=4时m=1时,符合题意…(8分)
(IV)a>4时,m>1,
x3+x4=2+a
2x3=x2+x4
x2+x3=0
,可解得x4=
6+3a
4

此时1<m<(
a
2
-1)2
,所以 a>
10+4
7
3
,或a<
10-4
7
3
(舍去)
故a>4且a>
10+4
7
3
时,m=-
3a2-20a+12
16
时存在   …(10分)
综上:①a<
3
+2
时,m=
3
4

②a=4时,m=1
③a>
10+4
7
3
时,m=-
3a2-20a+12
16
符合题意       …(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

35、已知偶函数y=f(x)(x∈R)在区间[-1,0]上单调递增,且满足f(1-x)+f(1+x)=0,给出下列判断:(1)f(5)=0;(2)f(x)在[1,2]上减函数;(3)f(x)的图象关与直线x=1对称;(4)函数f(x)在x=0处取得最大值;(5)函数y=f(x)没有最小值,其中正确的序号是
(1)(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)在[-1,0]上为单调递减函数,又α、β为锐角三角形的两内角,则(  )
A、f(sinα)>f(cosβ)B、f(sinα)<f(cosβ)C、f(sinα)>f(sinβ)D、f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)满足条件f(x+1)=f(x-1),且当x∈[-1,0]时,f(x)=3x+
4
9
,则f(log
1
3
5)
的值等于
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)在区间(-∞,0]上是增函数,下列不等式一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数y=f(x)(x∈R)在区间[0,3]上单调递增,在区间[3,+∞)上单调递减,且满足f(-4)=f(1)=0,则不等式x3f(x)<0的解集是(  )

查看答案和解析>>

同步练习册答案