(A)
(B)![]()
(C)
(D)![]()
科目:高中数学 来源: 题型:
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
现有变换公式
:
可把平面直角坐标系上的一点
变换到这一平面上的一点
.
(1)若椭圆
的中心为坐标原点,焦点在
轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2. 求该椭圆
的标准方程,并求出其两个焦点
、
经变换公式
变换后得到的点
和
的坐标;
(2) 若曲线
上一点
经变换公式
变换后得到的点
与点
重合,则称点
是曲线
在变换
下的不动点. 求(1)中的椭圆
在变换
下的所有不动点的坐标;
(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换
下的不动点的存在情况和个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
定义变换
:
可把平面直角坐标系上的点
变换到这一平面上的点
.特别地,若曲线
上一点
经变换公式
变换后得到的点
与点
重合,则称点
是曲线
在变换
下的不动点.
(1)若椭圆
的中心为坐标原点,焦点在
轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2. 求该椭圆
的标准方程. 并求出当
时,其两个焦点
、
经变换公式
变换后得到的点
和
的坐标;
(2)当
时,求(1)中的椭圆
在变换
下的所有不动点的坐标;
(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
:
(
,
)下的不动点的存在情况和个数.
查看答案和解析>>
科目:高中数学 来源:2011年高考试题数学文(重庆卷)解析版 题型:解答是:本大题
(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分.)如图,椭圆的中心为原点
,离心率
=
,一条准线的方程是
=
.
![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点
满足:
=
,其中
,
是椭圆上的点,直线
与
的斜率之积为
.问:是否存在定点
,使得
与点
到直线
:
=
的距离之比为定值?若存在,求
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2011年高考试题数学理(重庆卷)解析版 题型:解答题
(本小题满分12分,第一问4分,第二问8分)
如图(20),椭圆的中心为原点O,离心率
,一条准线的方程为
。
(Ⅰ)求该椭圆的标准方程。
(Ⅱ)设动点P满足
,其中M,N是椭圆上的点。直线OM与ON的斜率之积为
。问:是否存在两个定点
,使得
为定值。若存在,求
的坐标;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com