精英家教网 > 高中数学 > 题目详情
在二项式(ax+
3
x
)6(a∈R)
的展开式中,常数项的值是-20,则
lim
n→∞
(a+a2+a3+…+an)
=______.
由题意二项式(ax+
3
x
)6(a∈R)
的展开式的通项为Tr+1=
a6-r3rCr6
x6-2r

令6-2r=0可得r=3
此时的常数项为T4=(3a)3
C36
=-20,解得a=-
1
3

lim
n→∞
(a+a2+a3+…+an)
=
lim
n→∞
-
1
3
[1-(-
1
3
)n]
1+
1
3
=-
1
4

故答案为:-
1
4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•松江区二模)在二项式(ax+
3
x
)6(a∈R)
的展开式中,常数项的值是-20,则
lim
n→∞
(a+a2+a3+…+an)
=
-
1
4
-
1
4

查看答案和解析>>

同步练习册答案