精英家教网 > 高中数学 > 题目详情
2.已知f(n)=cos$\frac{nπ}{5}$(n∈Z),求f(1)+f(2)+f(3)+…+f(2014)的值.

分析 由三角函数的周期性和对称性,以及诱导公式可得.

解答 解:由题意可得函数的周期为T$\frac{2π}{\frac{π}{5}}$=10,
由三角函数的对称性计算可得f(1)+f(2)+f(3)+…+f(10)=0,
∴f(1)+f(2)+f(3)+…+f(2014)=f(1)+f(2)+f(3)+f(4)
=cos$\frac{π}{5}$+cos$\frac{2π}{5}$+cos$\frac{3π}{5}$+cos$\frac{4π}{5}$=cos$\frac{π}{5}$+cos$\frac{2π}{5}$+cos(π-$\frac{2π}{5}$)+cos($π-\frac{π}{5}$)
=cos$\frac{π}{5}$+cos$\frac{2π}{5}$-cos$\frac{2π}{5}$-cos$\frac{π}{5}$=0

点评 本题考查余弦函数的图象和周期性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图所示,以原点O为圆心的两个同心圆的半径分别为3和1,过原点O的射线交大圆于点P,交小圆于点Q,P在y轴上的射影为M,动点N满足$\overrightarrow{PM}$=λ$\overrightarrow{PN}$且$\overrightarrow{PM}$•$\overrightarrow{QN}$=0.
(1)求点N的轨迹方程;
(2)过点A(0,3)作斜率分别为k1,k2的直线l1,l2与点N的轨迹分别交于E,F两点,k1•k2=-9,求证:直线EF过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x+$\frac{9}{x}$.
(1)判断并证明f(x)在(3,+∞)上的单调性;
(2)求函数f(x)在[6,9]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点(1,-1)关于直线2x+3y-6=0的对称点坐标为($\frac{41}{13}$,$\frac{29}{13}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=cos(2x-$\frac{π}{3}$).
(1)若函数定义在(0,$\frac{π}{2}$)上,求函数的值域;
(2)若函数定义在R上,求不等式f(x)≥0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线l1:a(x-y+2)+2x-y+3=0(a∈R)与直线l2的距离为1,若l2不与坐标轴平行,且在y轴上的截距为-2,则l2的方程为4x+3y+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线y=kx+3经过M(4,2),则k=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号12345678910
数学/分95758094926567849871
物理/分90637287917158829381
序号11121314151617181920
数学/分67936478779057837283
物理/分77824885699161847886
若单科成绩在85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀数学成绩不优秀合计
物理成绩优秀5217
物理成绩不优秀11213
合计61420
(2)根据题(1)中表格的数据计算,能否有99%的把握认为学生的数学成绩与物理成绩之间有关系?
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据当Χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
当Χ2>2.706时,有90%的把握判定变量A,B有关联;
当Χ2>3.841时,有95%的把握判定变量A,B有关联;
当Χ2>6.635时,有99%的把握判定变量A,B有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则图中阴影部分表示的集合为(  )
A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}

查看答案和解析>>

同步练习册答案