精英家教网 > 高中数学 > 题目详情
8.求下列函数的导数.
(1)y=x2sinx;
(2)$y=\frac{lnx}{x}$;
(3)y=ln(2x-5).

分析 直接根据导数的运算法则求导即可.

解答 解:(1)y′=2xsinx+x2cosx
(2)${y^'}=\frac{1-lnx}{x^2}$
(3)${y^'}=\frac{2}{2x-5}$

点评 本题考查了导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.当x∈(0,+∞),幂函数y=(m2-m-1)xm为减函数,则实数m的值为(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知球O的一个内接三棱锥P-ABC,其中△ABC是边长为2的正三角形,PC为球O的直径,且PC=4,则此三棱锥的体积为$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在极坐标系中,直线ρ(cosθ+2sinθ)=1与直线ρsinθ=1的夹角大小为arctan$\frac{1}{2}$(结果用反函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表.能否在犯错误的概率不超过0.01的前提下认为成绩及格与班级有关系?
不及格及格总计
甲班103545
乙班73845
总计177390
K2=$\frac{n(ad-bc)^{2}}{(a+d)(c+d)(a+c)(b+d)}$
依据表
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
   k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于x的一元二次方程mx2-2mx+1=0一个根大于1,另一个根小于1,则实数m的取值范围是m<0或m>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,AA1,BB1均垂直于平面ABC和平面A1B1C1,∠BAC=∠A1B1C1=90°,AC=AB=A1A=B1C1=$\sqrt{2}$,则多面体ABC-A1B1C1的外接球的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下面用“三段论”形式写出的演绎推理:因为对数函数y=logax(a>0且a≠1)在(0,+∞)上是增函数,y=log${\;}_{\frac{1}{2}}$x是对数函数,所以y=log${\;}_{\frac{1}{2}}$x在(0,+∞)上是增函数,该结论显然是错误的,其原因是(  )
A.大前提错误B.小前提错误C.推理形式错误D.以上都可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在区间(0,1)上随机取两个实数m,n,则关于x的一元二次方程x2-2$\sqrt{m}$x+2n=0有实数根的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案