精英家教网 > 高中数学 > 题目详情
14.某几何体的三视图如图所示(单位:cm),则该几何体的体积是(  )
A.$\frac{1}{2}c{m^3}$B.1cm3C.$\frac{3}{2}c{m^3}$D.3cm3

分析 由三视图可知:该几何体为一个倒立的四棱锥,底面是一个直角梯形,上底AB=1,下底CD=2,AD⊥AB,AD=1,侧面PCD⊥底面ABCD,PC=PD.取CD的中点O,连接PO,则PO⊥CD,PO=1.即可得出.

解答 解:由三视图可知:该几何体为一个倒立的四棱锥,底面是一个直角梯形,上底AB=1,下底CD=2,AD⊥AB,
AD=1,侧面PCD⊥底面ABCD,PC=PD.
取CD的中点O,连接PO,则PO⊥CD,PO=1.
∴该几何体的体积V=$\frac{1}{3}×\frac{1+2}{2}×1×1$=$\frac{1}{2}$cm3
故选:A.

点评 本题考查了四棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设α,β是两个不同的平面,l是直线且l?α,则“α∥β”是“l∥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F1,F2分别是长轴长为2$\sqrt{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为-$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(-$\frac{1}{4}$,0),求线段AB长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.公元263年左右,我国数学家刘徽发现,当圆内接正多边形的边数无限增加时,正多边形的周长可无限逼近圆的周长,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率,利用刘徽的割圆术设计的程序框图如图所示,若输出的n=96,则判断框内可以填入(  )(参考数据:sin7.5°≈0.1305,sin3.75°≈0.06540,sin1.875°≈0.03272)
A.p≤3.14B.p≥3.14C.p≥3.1415D.p≥3.1415926

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C的极坐标方程为ρ=$\sqrt{\frac{2}{{1+{{sin}^2}θ}}}$,过点P(1,0)的直线l交曲线C于A,B两点.
(1)将曲线C的极坐标方程的化为普通方程;
(2)求|PA|•|PB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,直线C1:x=-5,圆${C_2}:{(x-2)^2}+{(y-1)^2}=1$,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1,C2的极坐标方程;
(2)若直线C3的极坐标方程为$θ=\frac{π}{4}(ρ∈R)$,C2与C3的交点为M,N,求△C2MN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三个向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面,且均为单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=0,则|$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$|的取值范围是(  )
A.[$\sqrt{2}$-1,$\sqrt{2}$+1]B.[1,$\sqrt{2}$]C.[$\sqrt{2}$,$\sqrt{3}$]D.[$\sqrt{2}$-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$\frac{1+x}{1-x}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y满足$\left\{\begin{array}{l}2x-y≤0\\ x+y≤3\\ x≥0\end{array}\right.$则y-x的最大值为(  )
A.0B.3C.4D.5

查看答案和解析>>

同步练习册答案